Collaborating Authors

Li, Bohan

Efficient Local Search based on Dynamic Connectivity Maintenance for Minimum Connected Dominating Set

Journal of Artificial Intelligence Research

The minimum connected dominating set (MCDS) problem is an important extension of the minimum dominating set problem, with wide applications, especially in wireless networks. Most previous works focused on solving MCDS problem in graphs with relatively small size, mainly due to the complexity of maintaining connectivity. This paper explores techniques for solving MCDS problem in massive real-world graphs with wide practical importance. Firstly, we propose a local greedy construction method with reasoning rule called 1hopReason. Secondly and most importantly, a hybrid dynamic connectivity maintenance method (HDC+) is designed to switch alternately between a novel fast connectivity maintenance method based on spanning tree and its previous counterpart. Thirdly, we adopt a two-level vertex selection heuristic with a newly proposed scoring function called chronosafety to make the algorithm more considerate when selecting vertices. We design a new local search algorithm called FastCDS based on the three ideas. Experiments show that FastCDS significantly outperforms five state-of-the-art MCDS algorithms on both massive graphs and classic benchmarks.

AdaSpeech: Adaptive Text to Speech for Custom Voice Artificial Intelligence

Custom voice, a specific text to speech (TTS) service in commercial speech platforms, aims to adapt a source TTS model to synthesize personal voice for a target speaker using few speech data. Custom voice presents two unique challenges for TTS adaptation: 1) to support diverse customers, the adaptation model needs to handle diverse acoustic conditions that could be very different from source speech data, and 2) to support a large number of customers, the adaptation parameters need to be small enough for each target speaker to reduce memory usage while maintaining high voice quality. In this work, we propose AdaSpeech, an adaptive TTS system for high-quality and efficient customization of new voices. We design several techniques in AdaSpeech to address the two challenges in custom voice: 1) To handle different acoustic conditions, we use two acoustic encoders to extract an utterance-level vector and a sequence of phoneme-level vectors from the target speech during training; in inference, we extract the utterance-level vector from a reference speech and use an acoustic predictor to predict the phoneme-level vectors. 2) To better trade off the adaptation parameters and voice quality, we introduce conditional layer normalization in the mel-spectrogram decoder of AdaSpeech, and fine-tune this part in addition to speaker embedding for adaptation. We pre-train the source TTS model on LibriTTS datasets and fine-tune it on VCTK and LJSpeech datasets (with different acoustic conditions from LibriTTS) with few adaptation data, e.g., 20 sentences, about 1 minute speech. Experiment results show that AdaSpeech achieves much better adaptation quality than baseline methods, with only about 5K specific parameters for each speaker, which demonstrates its effectiveness for custom voice. Audio samples are available at

A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text Machine Learning

When trained effectively, the Variational Autoencoder (VAE) is both a powerful language model and an effective representation learning framework. In practice, however, VAEs are trained with the evidence lower bound (ELBO) as a surrogate objective to the intractable marginal data likelihood. This approach to training yields unstable results, frequently leading to a disastrous local optimum known as posterior collapse. In this paper, we investigate a simple fix for posterior collapse which yields surprisingly effective results. The combination of two known heuristics, previously considered only in isolation, substantially improves held-out likelihood, reconstruction, and latent representation learning when compared with previous state-of-the-art methods. More interestingly, while our experiments demonstrate superiority on these principle evaluations, our method obtains a worse ELBO. We use these results to argue that the typical surrogate objective for VAEs may not be sufficient or necessarily appropriate for balancing the goals of representation learning and data distribution modeling.

Stochastic WaveNet: A Generative Latent Variable Model for Sequential Data Machine Learning

How to model distribution of sequential data, including but not limited to speech and human motions, is an important ongoing research problem. It has been demonstrated that model capacity can be significantly enhanced by introducing stochastic latent variables in the hidden states of recurrent neural networks. Simultaneously, WaveNet, equipped with dilated convolutions, achieves astonishing empirical performance in natural speech generation task. In this paper, we combine the ideas from both stochastic latent variables and dilated convolutions, and propose a new architecture to model sequential data, termed as Stochastic WaveNet, where stochastic latent variables are injected into the WaveNet structure. We argue that Stochastic WaveNet enjoys powerful distribution modeling capacity and the advantage of parallel training from dilated convolutions. In order to efficiently infer the posterior distribution of the latent variables, a novel inference network structure is designed based on the characteristics of WaveNet architecture. State-of-the-art performances on benchmark datasets are obtained by Stochastic WaveNet on natural speech modeling and high quality human handwriting samples can be generated as well.