Collaborating Authors

Lee, Gilwoo

Imitation Learning as $f$-Divergence Minimization Machine Learning

We address the problem of imitation learning with multi-modal demonstrations. Instead of attempting to learn all modes, we argue that in many tasks it is sufficient to imitate any one of them. We show that the state-of-the-art methods such as GAIL and behavior cloning, due to their choice of loss function, often incorrectly interpolate between such modes. Our key insight is to minimize the right divergence between the learner and the expert state-action distributions, namely the reverse KL divergence or I-projection. We propose a general imitation learning framework for estimating and minimizing any f-Divergence. By plugging in different divergences, we are able to recover existing algorithms such as Behavior Cloning (Kullback-Leibler), GAIL (Jensen Shannon) and DAGGER (Total Variation). Empirical results show that our approximate I-projection technique is able to imitate multi-modal behaviors more reliably than GAIL and behavior cloning.

Bayes-CPACE: PAC Optimal Exploration in Continuous Space Bayes-Adaptive Markov Decision Processes Machine Learning

We present the first PAC optimal algorithm for Bayes-Adaptive Markov Decision Processes (BAMDPs) in continuous state and action spaces, to the best of our knowledge. The BAMDP framework elegantly addresses model uncertainty by incorporating Bayesian belief updates into long-term expected return. However, computing an exact optimal Bayesian policy is intractable. Our key insight is to compute a near-optimal value function by covering the continuous state-belief-action space with a finite set of representative samples and exploiting the Lipschitz continuity of the value function. We prove the near-optimality of our algorithm and analyze a number of schemes that boost the algorithm's efficiency. Finally, we empirically validate our approach on a number of discrete and continuous BAMDPs and show that the learned policy has consistently competitive performance against baseline approaches.