Collaborating Authors

Lahijanian, Morteza

LTLf Synthesis on Probabilistic Systems Artificial Intelligence

Many systems are naturally modeled as Markov Decision Processes (MDPs), combining probabilities and strategic actions. Given a model of a system as an MDP and some logical specification of system behavior, the goal of synthesis is to find a policy that maximizes the probability of achieving this behavior. A popular choice for defining behaviors is Linear Temporal Logic (LTL). Policy synthesis on MDPs for properties specified in LTL has been well studied. LTL, however, is defined over infinite traces, while many properties of interest are inherently finite. Linear Temporal Logic over finite traces (LTLf) has been used to express such properties, but no tools exist to solve policy synthesis for MDP behaviors given finite-trace properties. We present two algorithms for solving this synthesis problem: the first via reduction of LTLf to LTL and the second using native tools for LTLf. We compare the scalability of these two approaches for synthesis and show that the native approach offers better scalability compared to existing automaton generation tools for LTL.

Online Mapping and Motion Planning under Uncertainty for Safe Navigation in Unknown Environments Artificial Intelligence

Safe autonomous navigation is an essential and challenging problem for robots operating in highly unstructured or completely unknown environments. Under these conditions, not only robotic systems must deal with limited localisation information, but also their manoeuvrability is constrained by their dynamics and often suffer from uncertainty. In order to cope with these constraints, this manuscript proposes an uncertainty-based framework for mapping and planning feasible motions online with probabilistic safety-guarantees. The proposed approach deals with the motion, probabilistic safety, and online computation constraints by: (i) incrementally mapping the surroundings to build an uncertainty-aware representation of the environment, and (ii) iteratively (re)planning trajectories to goal that are kinodynamically feasible and probabilistically safe through a multi-layered sampling-based planner in the belief space. In-depth empirical analyses illustrate some important properties of this approach, namely, (a) the multi-layered planning strategy enables rapid exploration of the high-dimensional belief space while preserving asymptotic optimality and completeness guarantees, and (b) the proposed routine for probabilistic collision checking results in tighter probability bounds in comparison to other uncertainty-aware planners in the literature. Furthermore, real-world in-water experimental evaluation on a non-holonomic torpedo-shaped autonomous underwater vehicle and simulated trials in the Stairwell scenario of the DARPA Subterranean Challenge 2019 on a quadrotor unmanned aerial vehicle demonstrate the efficacy of the method as well as its suitability for systems with limited on-board computational power.

This Time the Robot Settles for a Cost: A Quantitative Approach to Temporal Logic Planning with Partial Satisfaction

AAAI Conferences

The specification of complex motion goals through temporal logics is increasingly favored in robotics to narrow the gap between task and motion planning. A major limiting factor of such logics, however, is their Boolean satisfaction condition. To relax this limitation, we introduce a method for quantifying the satisfaction of co-safe linear temporal logic specifications, and propose a planner that uses this method to synthesize robot trajectories with the optimal satisfaction value. The method assigns costs to violations of specifications from user-defined proposition costs. These violation costs define a distance to satisfaction and can be computed algorithmically using a weighted automaton. The planner utilizes this automaton and an abstraction of the robotic system to construct a product graph that captures all possible robot trajectories and their distances to satisfaction. Then, a plan with the minimum distance to satisfaction is generated by employing this graph as the high-level planner in a synergistic planning framework. The efficacy of the method is illustrated on a robot with unsatisfiable specifications in an office environment.

Optimal and Efficient Stochastic Motion Planning in Partially-Known Environments

AAAI Conferences

A framework capable of computing optimal control policies for a continuous system in the presence of both action and environment uncertainty is presented in this work. The framework decomposes the planning problem into two stages: an offline phase that reasons only over action uncertainty and an online phase that quickly reacts to the uncertain environment. Offline, a bounded-parameter Markov decision process (BMDP) is employed to model the evolution of the stochastic system over a discretization of the environment. Online, an optimal control policy over the BMDP is computed. Upon the discovery of an unknown environment feature during policy execution, the BMDP is updated and the optimal control policy is efficiently recomputed. Depending on the desired quality of the control policy, a suite of methods is presented to incorporate new information into the BMDP with varying degrees of detail online. Experiments confirm that the framework recomputes high-quality policies in seconds and is orders of magnitude faster than existing methods.