Kraus, Sarit


Advice Provision for Energy Saving in Automobile Climate-Control System

AI Magazine

Reducing energy consumption of climate control systems is important in order to reduce human environmental footprint. Our approach takes into account both the energy consumption of the climate control system and the expected comfort level of the driver. We therefore build two models, one for assessing the energy consumption of the climate control system as a function of the system's settings, and the other, models human comfort level as a function of the climate control system's settings. Using these models, the agent provides advice to the driver considering how to set the climate control system.


How to Change a Group’s Collective Decision?

AAAI Conferences

Persuasion is a common social and economic activity. It usually arises when conflicting interests among agents exist, and one of the agents wishes to sway the opinions of others. This paper considers the problem of an automated agent that needs to influence the decision of a group of self-interested agents that must reach an agreement on a joint action. For example, consider an automated agent that aims to reduce the energy consumption of a nonresidential building, by convincing a group of people who share an office to agree on an economy mode of the air-conditioning and low light intensity. In this paper we present four problems that address issues of minimality and safety of the persuasion process. We discuss the relationships to similar problems from social choice, and show that if the agents are using Plurality or Veto as their voting rule all of our problems are in P. We also show that with k-Approval, Bucklin and Borda voting rules some problems become intractable. We thus present heuristics for efficient persuasion with Borda, and evaluate them through simulations.


Towards Adapting Cars to their Drivers

AI Magazine

Such interactive activity leads us to consider intelligent and advanced ways of interaction leading to cars that can adapt to their drivers.In this paper, we focus on the Adaptive Cruise Control (ACC) technology that allows a vehicle to automatically adjust its speed to maintain a preset distance from the vehicle in front of it based on the driver's preferences. We introduce a method to combine machine learning algorithms with demographic information and expert advice into existing automated assistive systems. This method can reduce the interactions between drivers and automated systems by adjusting parameters relevant to the operation of these systems based on their specific drivers and context of drive. While generic packages such as Weka were successful in learning drivers' behavior, we found that improved learning models could be developed by adding information on drivers' demographics and a previously developed model about different driver types.


Towards Adapting Cars to their Drivers

AI Magazine

Traditionally, vehicles have been considered as machines that are controlled by humans for the purpose of transportation. A more modern view is to envision drivers and passengers as actively interacting with a complex automated system. Such interactive activity leads us to consider intelligent and advanced ways of interaction leading to cars that can adapt to their drivers.In this paper, we focus on the Adaptive Cruise Control (ACC) technology that allows a vehicle to automatically adjust its speed to maintain a preset distance from the vehicle in front of it based on the driver’s preferences. Although individual drivers have different driving styles and preferences, current systems do not distinguish among users. We introduce a method to combine machine learning algorithms with demographic information and expert advice into existing automated assistive systems. This method can reduce the interactions between drivers and automated systems by adjusting parameters relevant to the operation of these systems based on their specific drivers and context of drive. We also learn when users tend to engage and disengage the automated system. This method sheds light on the kinds of dynamics that users develop while interacting with automation and can teach us how to improve these systems for the benefit of their users. While generic packages such as Weka were successful in learning drivers’ behavior, we found that improved learning models could be developed by adding information on drivers’ demographics and a previously developed model about different driver types. We present the general methodology of our learning procedure and suggest applications of our approach to other domains as well.


Comparing Agents' Success against People in Security Domains

AAAI Conferences

The interaction of people with autonomous agents has become increasingly prevalent. Some of these settings include security domains, where people can be characterized as uncooperative, hostile, manipulative, and tending to take advantage of the situation for their own needs. This makes it challenging to design proficient agents to interact with people in such environments. Evaluating the success of the agents automatically before evaluating them with people or deploying them could alleviate this challenge and result in better designed agents. In this paper we show how Peer Designed Agents (PDAs) -- computer agents developed by human subjects -- can be used as a method for evaluating autonomous agents in security domains. Such evaluation can reduce the effort and costs involved in evaluating autonomous agents interacting with people to validate their efficacy. Our experiments included more than 70 human subjects and 40 PDAs developed by students. The study provides empirical support that PDAs can be used to compare the proficiency of autonomous agents when matched with people in security domains.


Identifying Missing Node Information in Social Networks

AAAI Conferences

In recent years, social networks have surged in popularity as one of the main applications of the Internet. This has generated great interest in researching these networks by various fields in the scientific community. One key aspect of social network research is identifying important missing information which is not explicitly represented in the network, or is not visible to all. To date, this line of research typically focused on what connections were missing between nodes,or what is termed the "Missing Link Problem." This paper introduces a new Missing Nodes Identification problem where missing members in the social network structure must be identified. Towards solving this problem, we present an approach based on clustering algorithms combined with measures from missing link research. We show that this approach has beneficial results in the missing nodes identification process and we measure its performance in several different scenarios.


Intentions in Equilibrium

AAAI Conferences

Intentions have been widely studied in AI, both in the context of decision-making within individual agents and in multi-agent systems. Work on intentions in multi-agent systems has focused on joint intention models, which characterise the mental state of agents with a shared goal engaged in teamwork. In the absence of shared goals, however, intentions play another crucial role in multi-agent activity: they provide a basis around which agents can mutually coordinate activities. Models based on shared goals do not attempt to account for or explain this role of intentions. In this paper, we present a formal model of multi-agent systems in which belief-desire-intention agents choose their intentions taking into account the intentions of others. To understand rational mental states in such a setting, we formally define and investigate notions of multi-agent intention equilibrium, which are related to equilibrium concepts in game theory.


Mixing Search Strategies for Multi-Player Games

AAAI Conferences

There are two basic approaches to generalize the propagation mechanism of the two-player Minimax search algorithm to multi-player (3 or more) games: the MaxN algorithm and the Paranoid algorithm. The main shortcoming of these approaches is that their strategy is fixed. In this paper we suggest a new approach (called MP-Mix) that dynamically changes the propagation strategy based on the players' relative strengths between MaxN, Paranoid and a newly presented  offensive strategy. In addition, we introduce the Opponent Impact factor for multi-player games, which measures the players' ability to impact their opponents' score, and show its relation to the relative performance of our new MP-Mix strategy. Experimental results show that MP-Mix outperforms all other approaches under most circumstances.


Using Game Theory for Los Angeles Airport Security

AI Magazine

Security at major locations of economic or political importance is a key concern around the world, particularly given the threat of terrorism. Limited security resources prevent full security coverage at all times, which allows adversaries to observe and exploit patterns in selective patrolling or monitoring, e.g. they can plan an attack avoiding existing patrols. Hence, randomized patrolling or monitoring is important, but randomization must provide distinct weights to different actions based on their complex costs and benefits. To this end, this paper describes a promising transition of the latest in multi-agent algorithms into a deployed application. In particular, it describes a software assistant agent called ARMOR (Assistant for Randomized Monitoring over Routes) that casts this patrolling/monitoring problem as a Bayesian Stackelberg game, allowing the agent to appropriately weigh the different actions in randomization, as well as uncertainty over adversary types. ARMOR combines two key features: (i) It uses the fastest known solver for Bayesian Stackelberg games called DOBSS, where the dominant mixed strategies enable randomization; (ii) Its mixed-initiative based interface allows users to occasionally adjust or override the automated schedule based on their local constraints. ARMOR has been successfully deployed since August 2007 at the Los Angeles International Airport (LAX) to randomize checkpoints on the roadways entering the airport and canine patrol routes within the airport terminals. This paper examines the information, design choices, challenges, and evaluation that went into designing ARMOR.


Report on the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005)

AI Magazine

The 2005 Autonomous Agents and Multiagent Systems Conference (AAMAS 2005) was held July 25-29, 2005, at the University of Utrecht, the Netherlands. This report reviews the activities of that conference, including the workshop and tutorial programs, the main conference and poster tracks, the industry paper track, the demonstration track and sponsor demonstration sessions, the invited talks, exhibition, doctoral mentoring program, as well the sponsorship and scholarships activities.