Korf, R. E.


Bin Completion Algorithms for Multicontainer Packing, Knapsack, and Covering Problems

arXiv.org Artificial Intelligence

Many combinatorial optimization problems such as the bin packing and multiple knapsack problems involve assigning a set of discrete objects to multiple containers. These problems can be used to model task and resource allocation problems in multi-agent systems and distributed systms, and can also be found as subproblems of scheduling problems. We propose bin completion, a branch-and-bound strategy for one-dimensional, multicontainer packing problems. Bin completion combines a bin-oriented search space with a powerful dominance criterion that enables us to prune much of the space. The performance of the basic bin completion framework can be enhanced by using a number of extensions, including nogood-based pruning techniques that allow further exploitation of the dominance criterion. Bin completion is applied to four problems: multiple knapsack, bin covering, min-cost covering, and bin packing. We show that our bin completion algorithms yield new, state-of-the-art results for the multiple knapsack, bin covering, and min-cost covering problems, outperforming previous algorithms by several orders of magnitude with respect to runtime on some classes of hard, random problem instances. For the bin packing problem, we demonstrate significant improvements compared to most previous results, but show that bin completion is not competitive with current state-of-the-art cutting-stock based approaches.


Additive Pattern Database Heuristics

arXiv.org Artificial Intelligence

We explore a method for computing admissible heuristic evaluation functions for search problems. It utilizes pattern databases, which are precomputed tables of the exact cost of solving various subproblems of an existing problem. Unlike standard pattern database heuristics, however, we partition our problems into disjoint subproblems, so that the costs of solving the different subproblems can be added together without overestimating the cost of solving the original problem. Previously, we showed how to statically partition the sliding-tile puzzles into disjoint groups of tiles to compute an admissible heuristic, using the same partition for each state and problem instance. Here we extend the method and show that it applies to other domains as well. We also present another method for additive heuristics which we call dynamically partitioned pattern databases. Here we partition the problem into disjoint subproblems for each state of the search dynamically. We discuss the pros and cons of each of these methods and apply both methods to three different problem domains: the sliding-tile puzzles, the 4-peg Towers of Hanoi problem, and finding an optimal vertex cover of a graph. We find that in some problem domains, static partitioning is most effective, while in others dynamic partitioning is a better choice. In each of these problem domains, either statically partitioned or dynamically partitioned pattern database heuristics are the best known heuristics for the problem.


Linear-space best-first search

Classics

See also: Linear-Space Best-First Search: Summary of Results. AAAI-92.Artificial Intelligence, 62 (1), 41-78.



Planning as search: A quantitative approach

Classics

We present the thesis that planning can be viewed as problem-solving search using subgoals, macro-operators, and abstraction as knowledge sources. Our goal is to quantify problem-solving performance using these sources of knowledge. New results include the identification of subgoal distance as a fundamental measure of problem difficulty, a multiplicative time-space tradeoff for macro-operators, and an analysis of abstraction which concludes that abstraction hierarchies can reduce exponential problems to linear complexity. Artificial Intelligence, 33 (1), 65-88.