Korf, R. E.


Linear-space best-first search

Classics

Best-first search is a general heuristic search algorithm that always expands next a frontier node of lowest cost. It includes as special cases breadth-first search, Dijkstra's single-source shortest-path algorithm, and the A algorithm. Previous approaches to this problem, such as iterative deepening, do not expand nodes in best-first order if the cost function can decrease along a path. We present a linear-space best-first search algorithm (RBFS) that always explores new nodes in best-first order, regardless of the cost function, and expands fewer nodes than iterative deepening with a nondecreasing cost function.


Real-time heuristic search

Classics

See also:Real-Time Heuristic Search: First Results. AAAI-87. Artificial Intelligence, 42 (3), 189-212.


Planning as search: A quantitative approach

Classics

We present the thesis that planning can be viewed as problem-solving search using subgoals, macro-operators, and abstraction as knowledge sources. Our goal is to quantify problem-solving performance using these sources of knowledge. New results include the identification of subgoal distance as a fundamental measure of problem difficulty, a multiplicative time-space tradeoff for macro-operators, and an analysis of abstraction which concludes that abstraction hierarchies can reduce exponential problems to linear complexity.


Depth-first Iterative Deepening: An Optimal Admissible Tree Search

Classics

The complexities of various search algorithms are considered in terms of time, space, and cost of solution path. It is known that breadth-first search requires too much space and depth-first search can use too much time and doesn't always find a cheapest path. The algorithm has been used successfully in chess programs, has been effectively combined with bi-directional search, and has been applied to best-first heuristic search as well. This heuristic depth-first iterative-deepening algorithm is the only known algorithm that is capable of finding optimal solutions to randomly generated instances of the Fifteen Puzzle within practical resource limits.