Collaborating Authors

Kohli, Pushmeet

Evaluating the Apperception Engine Artificial Intelligence

The Apperception Engine is an unsupervised learning system. Given a sequence of sensory inputs, it constructs a symbolic causal theory that both explains the sensory sequence and also satisfies a set of unity conditions. The unity conditions insist that the constituents of the theory - objects, properties, and laws - must be integrated into a coherent whole. Once a theory has been constructed, it can be applied to predict future sensor readings, retrodict earlier readings, or impute missing readings. In this paper, we evaluate the Apperception Engine in a diverse variety of domains, including cellular automata, rhythms and simple nursery tunes, multi-modal binding problems, occlusion tasks, and sequence induction intelligence tests. In each domain, we test our engine's ability to predict future sensor values, retrodict earlier sensor values, and impute missing sensory data. The engine performs well in all these domains, significantly outperforming neural net baselines and state of the art inductive logic programming systems. These results are significant because neural nets typically struggle to solve the binding problem (where information from different modalities must somehow be combined together into different aspects of one unified object) and fail to solve occlusion tasks (in which objects are sometimes visible and sometimes obscured from view). We note in particular that in the sequence induction intelligence tests, our system achieved human-level performance. This is notable because our system is not a bespoke system designed specifically to solve intelligence tests, but a general-purpose system that was designed to make sense of any sensory sequence.

Strong Generalization and Efficiency in Neural Programs Artificial Intelligence

We study the problem of learning efficient algorithms that strongly generalize in the framework of neural program induction. By carefully designing the input / output interfaces of the neural model and through imitation, we are able to learn models that produce correct results for arbitrary input sizes, achieving strong generalization. Moreover, by using reinforcement learning, we optimize for program efficiency metrics, and discover new algorithms that surpass the teacher used in imitation. With this, our approach can learn to outperform custom-written solutions for a variety of problems, as we tested it on sorting, searching in ordered lists and the NP-complete 0/1 knapsack problem, which sets a notable milestone in the field of Neural Program Induction. As highlights, our learned model can perform sorting perfectly on any input data size we tested on, with $O(n log n)$ complexity, whilst outperforming hand-coded algorithms, including quick sort, in number of operations even for list sizes far beyond those seen during training.

Learning Transferable Graph Exploration

Neural Information Processing Systems

This paper considers the problem of efficient exploration of unseen environments, a key challenge in AI. We propose a learning to explore' framework where we learn a policy from a distribution of environments. At test time, presented with an unseen environment from the same distribution, the policy aims to generalize the exploration strategy to visit the maximum number of unique states in a limited number of steps. We particularly focus on environments with graph-structured state-spaces that are encountered in many important real-world applications like software testing and map building. We formulate this task as a reinforcement learning problem where the exploration' agent is rewarded for transitioning to previously unseen environment states and employ a graph-structured memory to encode the agent's past trajectory.

Adversarial Robustness through Local Linearization

Neural Information Processing Systems

Adversarial training is an effective methodology for training deep neural networks that are robust against adversarial, norm-bounded perturbations. However, the computational cost of adversarial training grows prohibitively as the size of the model and number of input dimensions increase. Further, training against less expensive and therefore weaker adversaries produces models that are robust against weak attacks but break down under attacks that are stronger. This is often attributed to the phenomenon of gradient obfuscation; such models have a highly non-linear loss surface in the vicinity of training examples, making it hard for gradient-based attacks to succeed even though adversarial examples still exist. In this work, we introduce a novel regularizer that encourages the loss to behave linearly in the vicinity of the training data, thereby penalizing gradient obfuscation while encouraging robustness.

Are Labels Required for Improving Adversarial Robustness?

Neural Information Processing Systems

Recent work has uncovered the interesting (and somewhat surprising) finding that training models to be invariant to adversarial perturbations requires substantially larger datasets than those required for standard classification. This result is a key hurdle in the deployment of robust machine learning models in many real world applications where labeled data is expensive. Our main insight is that unlabeled data can be a competitive alternative to labeled data for training adversarially robust models. Theoretically, we show that in a simple statistical setting, the sample complexity for learning an adversarially robust model from unlabeled data matches the fully supervised case up to constant factors. On standard datasets like CIFAR- 10, a simple Unsupervised Adversarial Training (UAT) approach using unlabeled data improves robust accuracy by 21.7% over using 4K supervised examples alone, and captures over 95% of the improvement from the same number of labeled examples.

Lagrangian Decomposition for Neural Network Verification Machine Learning

A fundamental component of neural network verification is the computation of bounds on the values their outputs can take. Previous methods have either used off-the-shelf solvers, discarding the problem structure, or relaxed the problem even further, making the bounds unnecessarily loose. We propose a novel approach based on Lagrangian Decomposition. Our formulation admits an efficient supergradient ascent algorithm, as well as an improved proximal algorithm. Both the algorithms offer three advantages: (i) they yield bounds that are provably at least as tight as previous dual algorithms relying on Lagrangian relaxations; (ii) they are based on operations analogous to forward/backward pass of neural networks layers and are therefore easily parallelizable, amenable to GPU implementation and able to take advantage of the convolutional structure of problems; and (iii) they allow for anytime stopping while still providing valid bounds. Empirically, we show that we obtain bounds comparable with off-the-shelf solvers in a fraction of their running time, and obtain tighter bounds in the same time as previous dual algorithms. This results in an overall speed-up when employing the bounds for formal verification.

Decision Jungles: Compact and Rich Models for Classification

Neural Information Processing Systems

Randomized decision trees and forests have a rich history in machine learning and have seen considerable success in application, perhaps particularly so for computer vision. However, they face a fundamental limitation: given enough data, the number of nodes in decision trees will grow exponentially with depth. For certain applications, for example on mobile or embedded processors, memory is a limited resource, and so the exponential growth of trees limits their depth, and thus their potential accuracy. This paper proposes decision jungles, revisiting the idea of ensembles of rooted decision directed acyclic graphs (DAGs), and shows these to be compact and powerful discriminative models for classification. Unlike conventional decision trees that only allow one path to every node, a DAG in a decision jungle allows multiple paths from the root to each leaf.

Local Rules for Global MAP: When Do They Work ?

Neural Information Processing Systems

We consider the question of computing Maximum A Posteriori (MAP) assignment in an arbitrary pair-wise Markov Random Field (MRF). We present a randomized iterative algorithm based on simple local updates. The algorithm, starting with an arbitrary initial assignment, updates it in each iteration by first, picking a random node, then selecting an (appropriately chosen) random local neighborhood and optimizing over this local neighborhood. Somewhat surprisingly, we show that this algorithm finds a near optimal assignment within $2n\ln n$ iterations on average and with high probability for {\em any} $n$ node pair-wise MRF with {\em geometry} (i.e. MRF graph with polynomial growth) with the approximation error depending on (in a reasonable manner) the geometric growth rate of the graph and the average radius of the local neighborhood -- this allows for a graceful tradeoff between the complexity of the algorithm and the approximation error.

Multiple Choice Learning: Learning to Produce Multiple Structured Outputs

Neural Information Processing Systems

The paper addresses the problem of generating multiple hypotheses for prediction tasks that involve interaction with users or successive components in a cascade. Given a set of multiple hypotheses, such components/users have the ability to automatically rank the results and thus retrieve the best one. The standard approach for handling this scenario is to learn a single model and then produce M-best Maximum a Posteriori (MAP) hypotheses from this model. In contrast, we formulate this multiple {\em choice} learning task as a multiple-output structured-output prediction problem with a loss function that captures the natural setup of the problem. We present a max-margin formulation that minimizes an upper-bound on this loss-function.

Higher-Order Correlation Clustering for Image Segmentation

Neural Information Processing Systems

For many of the state-of-the-art computer vision algorithms, image segmentation is an important preprocessing step. As such, several image segmentation algorithms have been proposed, however, with certain reservation due to high computational load and many hand-tuning parameters. Correlation clustering, a graph-partitioning algorithm often used in natural language processing and document clustering, has the potential to perform better than previously proposed image segmentation algorithms. We improve the basic correlation clustering formulation by taking into account higher-order cluster relationships. This improves clustering in the presence of local boundary ambiguities.