Koenig, Sven



Robot Planning in the Real World: Research Challenges and Opportunities

AI Magazine

Recent years have seen significant technical progress on robot planning, enabling robots to compute actions and motions to accomplish challenging tasks involving driving, flying, walking, or manipulating objects. However, robots that have been commercially deployed in the real world typically have no or minimal planning capability. Although these robots are highly successful in their respective niches, a lack of planning capabilities limits the range of tasks for which currently deployed robots can be used. In this article, we highlight key conclusions from a workshop sponsored by the National Science Foundation in October 2013 that summarize opportunities and key challenges in robot planning and include challenge problems identified in the workshop that can help guide future research towards making robot planning more deployable in the real world.


A Summary of the Twenty-Ninth AAAI Conference on Artificial Intelligence

AI Magazine

The Twenty-Ninth AAAI Conference on Artificial Intelligence, (AAAI-15) was held in January 2015 in Austin, Texas (USA) The conference program was cochaired by Sven Koenig and Blai Bonet. This report contains reflective summaries of the main conference, the robotics program, the AI and robotics workshop, the virtual agent exhibition, the what's hot track, the competition panel, the senior member track, student and outreach activities, the student abstract and poster program, the doctoral consortium, the women's mentoring event, and the demonstrations program.


Any-Angle Path Planning

AI Magazine

In robotics and video games, one often discretizes continuous terrain into a grid with blocked and unblocked grid cells and then uses path-planning algorithms to find a shortest path on the resulting grid graph. This path, however, is typically not a shortest path in the continuous terrain. In this overview article, we discuss a path-planning methodology for quickly finding paths in continuous terrain that are typically shorter than shortest grid paths. Any-angle path-planning algorithms are variants of the heuristic path-planning algorithm A* that find short paths by propagating information along grid edges (like A*, to be fast) without constraining the resulting paths to grid edges (unlike A*, to find short paths).


Subgoal Graphs for Optimal Pathfinding in Eight-Neighbor Grids

AAAI Conferences

Grids are often used to represent maps in video games. In this paper, we propose a method for preprocessing eightneighbor grids to generate subgoal graphs and show how subgoal graphs can be used to find shortest paths fast. We place subgoals at the corners of obstacles (similar to visibility graphs) and add those edges between subgoals that are necessary for finding shortest paths, while ensuring that each edge connects only subgoals that are easily reachable from one another. We describe a method for finding shortest paths by first finding high-level paths through subgoals and then shortest low-level paths between consecutive subgoals on the highlevel path. Our method was one of ten entries in the Grid-Based Path Planning Competition 2012. Among all optimal path planners, ours was the fastest to find complete paths and required the least amount of memory.


Efficient Incremental Search for Moving Target Search

AAAI Conferences

Incremental search algorithms reuse information from previous searches to speed up the current search and are thus often able to find shortest paths for series of similar search problems faster than by solving each search problem independently from scratch. However, they do poorly on moving target search problems, where both the start and goal cells change over time. In this paper, we thus develop Fringe-Retrieving A* (FRA*), an incremental version of A* that repeatedly finds shortest paths for moving target search in known gridworlds. We demonstrate experimentally that it runs up to one order of magnitude faster than a variety of state-of-the-art incremental search algorithms applied to moving target search in known gridworlds.


AAAI 2008 Workshop Reports

AI Magazine

AAAI 2008 Workshop Reports


AAAI 2008 Workshop Reports

AI Magazine

AAAI was pleased to present the AAAI-08 Workshop Program, held Sunday and Monday, July 13–14, in Chicago, Illinois, USA. The program included the following 15 workshops: Advancements in POMDP Solvers; AI Education Workshop Colloquium; Coordination, Organizations, Institutions, and Norms in Agent Systems, Enhanced Messaging; Human Implications of Human-Robot Interaction; Intelligent Techniques for Web Personalization and Recommender Systems; Metareasoning: Thinking about Thinking; Multidisciplinary Workshop on Advances in Preference Handling; Search in Artificial Intelligence and Robotics; Spatial and Temporal Reasoning; Trading Agent Design and Analysis; Transfer Learning for Complex Tasks; What Went Wrong and Why: Lessons from AI Research and Applications; and Wikipedia and Artificial Intelligence: An Evolving Synergy.


Reports on the Twenty-First National Conference on Artificial Intelligence (AAAI-06) Workshop Program

AI Magazine

The Workshop program of the Twenty-First Conference on Artificial Intelligence was held July 16-17, 2006 in Boston, Massachusetts. The program was chaired by Joyce Chai and Keith Decker. The titles of the 17 workshops were AIDriven Technologies for Service-Oriented Computing; Auction Mechanisms for Robot Coordination; Cognitive Modeling and Agent-Based Social Simulations, Cognitive Robotics; Computational Aesthetics: Artificial Intelligence Approaches to Beauty and Happiness; Educational Data Mining; Evaluation Methods for Machine Learning; Event Extraction and Synthesis; Heuristic Search, Memory- Based Heuristics, and Their Applications; Human Implications of Human-Robot Interaction; Intelligent Techniques in Web Personalization; Learning for Search; Modeling and Retrieval of Context; Modeling Others from Observations; and Statistical and Empirical Approaches for Spoken Dialogue Systems.


Reports on the Twenty-First National Conference on Artificial Intelligence (AAAI-06) Workshop Program

AI Magazine

The Workshop program of the Twenty-First Conference on Artificial Intelligence was held July 16-17, 2006 in Boston, Massachusetts. The program was chaired by Joyce Chai and Keith Decker. The titles of the 17 workshops were AIDriven Technologies for Service-Oriented Computing; Auction Mechanisms for Robot Coordination; Cognitive Modeling and Agent-Based Social Simulations, Cognitive Robotics; Computational Aesthetics: Artificial Intelligence Approaches to Beauty and Happiness; Educational Data Mining; Evaluation Methods for Machine Learning; Event Extraction and Synthesis; Heuristic Search, Memory- Based Heuristics, and Their Applications; Human Implications of Human-Robot Interaction; Intelligent Techniques in Web Personalization; Learning for Search; Modeling and Retrieval of Context; Modeling Others from Observations; and Statistical and Empirical Approaches for Spoken Dialogue Systems.