Collaborating Authors

Khadilkar, Harshad

A Generalized Reinforcement Learning Algorithm for Online 3D Bin-Packing Artificial Intelligence

We propose a Deep Reinforcement Learning (Deep RL) algorithm for solving the online 3D bin packing problem for an arbitrary number of bins and any bin size. The focus is on producing decisions that can be physically implemented by a robotic loading arm, a laboratory prototype used for testing the concept. The problem considered in this paper is novel in two ways. First, unlike the traditional 3D bin packing problem, we assume that the entire set of objects to be packed is not known a priori. Instead, a fixed number of upcoming objects is visible to the loading system, and they must be loaded in the order of arrival. Second, the goal is not to move objects from one point to another via a feasible path, but to find a location and orientation for each object that maximises the overall packing efficiency of the bin(s). Finally, the learnt model is designed to work with problem instances of arbitrary size without retraining. Simulation results show that the RL-based method outperforms state-of-the-art online bin packing heuristics in terms of empirical competitive ratio and volume efficiency.

Reinforcement Learning for Multi-Product Multi-Node Inventory Management in Supply Chains Artificial Intelligence

This paper describes the application of reinforcement learning (RL) to multi-product inventory management in supply chains. The problem description and solution are both adapted from a real-world business solution. The novelty of this problem with respect to supply chain literature is (i) we consider concurrent inventory management of a large number (50 to 1000) of products with shared capacity, (ii) we consider a multi-node supply chain consisting of a warehouse which supplies three stores, (iii) the warehouse, stores, and transportation from warehouse to stores have finite capacities, (iv) warehouse and store replenishment happen at different time scales and with realistic time lags, and (v) demand for products at the stores is stochastic. We describe a novel formulation in a multi-agent (hierarchical) reinforcement learning framework that can be used for parallelised decision-making, and use the advantage actor critic (A2C) algorithm with quantised action spaces to solve the problem. Experiments show that the proposed approach is able to handle a multi-objective reward comprised of maximising product sales and minimising wastage of perishable products.

Optimising Lockdown Policies for Epidemic Control using Reinforcement Learning Artificial Intelligence

In the context of the ongoing Covid-19 pandemic, several reports and studies have attempted to model and predict the spread of the disease. There is also intense debate about policies for limiting the damage, both to health and to the economy. On the one hand, the health and safety of the population is the principal consideration for most countries. On the other hand, we cannot ignore the potential for long-term economic damage caused by strict nation-wide lockdowns. In this working paper, we present a quantitative way to compute lockdown decisions for individual cities or regions, while balancing health and economic considerations. Furthermore, these policies are \textit{learnt} automatically by the proposed algorithm, as a function of disease parameters (infectiousness, gestation period, duration of symptoms, probability of death) and population characteristics (density, movement propensity). We account for realistic considerations such as imperfect lockdowns, and show that the policy obtained using reinforcement learning is a viable quantitative approach towards lockdowns.

Accelerating Training in Pommerman with Imitation and Reinforcement Learning Machine Learning

The Pommerman simulation was recently developed to mimic the classic Japanese game Bomberman, and focuses on competitive gameplay in a multi-agent setting. We focus on the 2$\times$2 team version of Pommerman, developed for a competition at NeurIPS 2018. Our methodology involves training an agent initially through imitation learning on a noisy expert policy, followed by a proximal-policy optimization (PPO) reinforcement learning algorithm. The basic PPO approach is modified for stable transition from the imitation learning phase through reward shaping, action filters based on heuristics, and curriculum learning. The proposed methodology is able to beat heuristic and pure reinforcement learning baselines with a combined 100,000 training games, significantly faster than other non-tree-search methods in literature. We present results against multiple agents provided by the developers of the simulation, including some that we have enhanced. We include a sensitivity analysis over different parameters, and highlight undesirable effects of some strategies that initially appear promising. Since Pommerman is a complex multi-agent competitive environment, the strategies developed here provide insights into several real-world problems with characteristics such as partial observability, decentralized execution (without communication), and very sparse and delayed rewards.

Reinforcement Learning for Multi-Objective Optimization of Online Decisions in High-Dimensional Systems Artificial Intelligence

This paper describes a purely data-driven solution to a class of sequential decision-making problems with a large number of concurrent online decisions, with applications to computing systems and operations research. We assume that while the micro-level behaviour of the system can be broadly captured by analytical expressions or simulation, the macro-level or emergent behaviour is complicated by non-linearity, constraints, and stochasticity. If we represent the set of concurrent decisions to be computed as a vector, each element of the vector is assumed to be a continuous variable, and the number of such elements is arbitrarily large and variable from one problem instance to another. We first formulate the decision-making problem as a canonical reinforcement learning (RL) problem, which can be solved using purely data-driven techniques. We modify a standard approach known as advantage actor critic (A2C) to ensure its suitability to the problem at hand, and compare its performance to that of baseline approaches on the specific instance of a multi-product inventory management task. The key modifications include a parallelised formulation of the decision-making task, and a training procedure that explicitly recognises the quantitative relationship between different decisions. We also present experimental results probing the learned policies, and their robustness to variations in the data.