Collaborating Authors

Kübler, Jonas M.

Causal Inference Through the Structural Causal Marginal Problem Artificial Intelligence

We introduce an approach to counterfactual inference based on merging information from multiple datasets. We consider a causal reformulation of the statistical marginal problem: given a collection of marginal structural causal models (SCMs) over distinct but overlapping sets of variables, determine the set of joint SCMs that are counterfactually consistent with the marginal ones. We formalise this approach for categorical SCMs using the response function formulation and show that it reduces the space of allowed marginal and joint SCMs. Our work thus highlights a new mode of falsifiability through additional variables, in contrast to the statistical one via additional data.

Quantum machine learning beyond kernel methods Machine Learning

With noisy intermediate-scale quantum computers showing great promise for near-term applications, a number of machine learning algorithms based on parametrized quantum circuits have been suggested as possible means to achieve learning advantages. Yet, our understanding of how these quantum machine learning models compare, both to existing classical models and to each other, remains limited. A big step in this direction has been made by relating them to so-called kernel methods from classical machine learning. By building on this connection, previous works have shown that a systematic reformulation of many quantum machine learning models as kernel models was guaranteed to improve their training performance. In this work, we first extend the applicability of this result to a more general family of parametrized quantum circuit models called data re-uploading circuits. Secondly, we show, through simple constructions and numerical simulations, that models defined and trained variationally can exhibit a critically better generalization performance than their kernel formulations, which is the true figure of merit of machine learning tasks. Our results constitute another step towards a more comprehensive theory of quantum machine learning models next to kernel formulations.

The Inductive Bias of Quantum Kernels Machine Learning

It has been hypothesized that quantum computers may lend themselves well to applications in machine learning. In the present work, we analyze function classes defined via quantum kernels. Quantum computers offer the possibility to efficiently compute inner products of exponentially large density operators that are classically hard to compute. However, having an exponentially large feature space renders the problem of generalization hard. Furthermore, being able to evaluate inner products in high dimensional spaces efficiently by itself does not guarantee a quantum advantage, as already classically tractable kernels can correspond to high- or infinite-dimensional reproducing kernel Hilbert spaces (RKHS). We analyze the spectral properties of quantum kernels and find that we can expect an advantage if their RKHS is low dimensional and contains functions that are hard to compute classically. If the target function is known to lie in this class, this implies a quantum advantage, as the quantum computer can encode this inductive bias, whereas there is no classically efficient way to constrain the function class in the same way. However, we show that finding suitable quantum kernels is not easy because the kernel evaluation might require exponentially many measurements. In conclusion, our message is a somewhat sobering one: we conjecture that quantum machine learning models can offer speed-ups only if we manage to encode knowledge about the problem at hand into quantum circuits, while encoding the same bias into a classical model would be hard. These situations may plausibly occur when learning on data generated by a quantum process, however, they appear to be harder to come by for classical datasets.

An Optimal Witness Function for Two-Sample Testing Machine Learning

We propose data-dependent test statistics based on a one-dimensional witness function, which we call witness two-sample tests (WiTS tests). We first optimize the witness function by maximizing an asymptotic test-power objective and then use as the test statistic the difference in means of the witness evaluated on two held-out test samples. When the witness function belongs to a reproducing kernel Hilbert space, we show that the optimal witness is given via kernel Fisher discriminant analysis, whose solution we compute in closed form. We show that the WiTS test based on a characteristic kernel is consistent against any fixed alternative. Our experiments demonstrate that the WiTS test can achieve higher test power than existing two-sample tests with optimized kernels, suggesting that learning a high- or infinite-dimensional representation of the data may not be necessary for two-sample testing. The proposed procedure works beyond kernel methods, allowing practitioners to apply it within their preferred machine learning framework.

Learning Kernel Tests Without Data Splitting Machine Learning

Modern large-scale kernel-based tests such as maximum mean discrepancy (MMD) and kernelized Stein discrepancy (KSD) optimize kernel hyperparameters on a held-out sample via data splitting to obtain the most powerful test statistics. While data splitting results in a tractable null distribution, it suffers from a reduction in test power due to smaller test sample size. Inspired by the selective inference framework, we propose an approach that enables learning the hyperparameters and testing on the full sample without data splitting. Our approach can correctly calibrate the test in the presence of such dependency, and yield a test threshold in closed form. At the same significance level, our approach's test power is empirically larger than that of the data-splitting approach, regardless of its split proportion.