Goto

Collaborating Authors

Israelsen, Brett W


Machine Self-Confidence in Autonomous Systems via Meta-Analysis of Decision Processes

arXiv.org Artificial Intelligence

Algorithmic assurances from advanced autonomous systems assist human users in understanding, trusting, and using such systems appropriately. Designing these systems with the capacity of assessing their own capabilities is one approach to creating an algorithmic assurance. The idea of `machine self-confidence' is introduced for autonomous systems. Using a factorization based framework for self-confidence assessment, one component of self-confidence, called `solver-quality', is discussed in the context of Markov decision processes for autonomous systems. Markov decision processes underlie much of the theory of reinforcement learning, and are commonly used for planning and decision making under uncertainty in robotics and autonomous systems. A `solver quality' metric is formally defined in the context of decision making algorithms based on Markov decision processes. A method for assessing solver quality is then derived, drawing inspiration from empirical hardness models. Finally, numerical experiments for an unmanned autonomous vehicle navigation problem under different solver, parameter, and environment conditions indicate that the self-confidence metric exhibits the desired properties. Discussion of results, and avenues for future investigation are included.


"Dave...I can assure you...that it's going to be all right..." -- A definition, case for, and survey of algorithmic assurances in human-autonomy trust relationships

arXiv.org Machine Learning

As technology becomes more advanced, those who design, use and are otherwise affected by it want to know that it will perform correctly, and understand why it does what it does, and how to use it appropriately. In essence they want to be able to trust the systems that are being designed. In this survey we present assurances that are the method by which users can understand how to trust autonomous systems. Trust between humans and autonomy is reviewed, and the implications for the design of assurances are highlighted. A survey of existing research related to assurances is presented. Much of the surveyed research originates from fields such as interpretable, comprehensible, transparent, and explainable machine learning, as well as human-computer interaction, human-robot interaction, and e-commerce. Several key ideas are extracted from this work in order to refine the definition of assurances. The design of assurances is found to be highly dependent not only on the capabilities of the autonomous system, but on the characteristics of the human user, and the appropriate trust-related behaviors. Several directions for future research are identified and discussed.


"I can assure you [$\ldots$] that it's going to be all right" -- A definition, case for, and survey of algorithmic assurances in human-autonomy trust relationships

arXiv.org Machine Learning

As technology become more advanced, those who design, use and are otherwise affected by it want to know that it will perform correctly, and understand why it does what it does, and how to use it appropriately. In essence they want to be able to trust the systems that are being designed. In this survey we present assurances that are the method by which users can understand how to trust this technology. Trust between humans and autonomy is reviewed, and the implications for the design of assurances are highlighted. A survey of research that has been performed with respect to assurances is presented, and several key ideas are extracted in order to refine the definition of assurances. Several directions for future research are identified and discussed.