Goto

Collaborating Authors

Hui, Siu Cheung


Compositional De-Attention Networks

Neural Information Processing Systems

Attentional models are distinctly characterized by their ability to learn relative importance, i.e., assigning a different weight to input values. This paper proposes a new quasi-attention that is compositional in nature, i.e., learning whether to \textit{add}, \textit{subtract} or \textit{nullify} a certain vector when learning representations. This is strongly contrasted with vanilla attention, which simply re-weights input tokens. Our proposed \textit{Compositional De-Attention} (CoDA) is fundamentally built upon the intuition of both similarity and dissimilarity (negative affinity) when computing affinity scores, benefiting from a greater extent of expressiveness. We evaluate CoDA on six NLP tasks, i.e. open domain question answering, retrieval/ranking, natural language inference, machine translation, sentiment analysis and text2code generation.


Densely Connected Attention Propagation for Reading Comprehension

Neural Information Processing Systems

We propose DecaProp (Densely Connected Attention Propagation), a new densely connected neural architecture for reading comprehension (RC). There are two distinct characteristics of our model. Firstly, our model densely connects all pairwise layers of the network, modeling relationships between passage and query across all hierarchical levels. Secondly, the dense connectors in our network are learned via attention instead of standard residual skip-connectors. To this end, we propose novel Bidirectional Attention Connectors (BAC) for efficiently forging connections throughout the network.


Recurrently Controlled Recurrent Networks

Neural Information Processing Systems

Recurrent neural networks (RNNs) such as long short-term memory and gated recurrent units are pivotal building blocks across a broad spectrum of sequence modeling problems. This paper proposes a recurrently controlled recurrent network (RCRN) for expressive and powerful sequence encoding. More concretely, the key idea behind our approach is to learn the recurrent gating functions using recurrent networks. Our architecture is split into two components - a controller cell and a listener cell whereby the recurrent controller actively influences the compositionality of the listener cell. We conduct extensive experiments on a myriad of tasks in the NLP domain such as sentiment analysis (SST, IMDb, Amazon reviews, etc.), question classification (TREC), entailment classification (SNLI, SciTail), answer selection (WikiQA, TrecQA) and reading comprehension (NarrativeQA).


Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives

arXiv.org Artificial Intelligence

This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by $51\%$ relative improvement on BLEU-4 and $17\%$ relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components.


Recurrently Controlled Recurrent Networks

Neural Information Processing Systems

Recurrent neural networks (RNNs) such as long short-term memory and gated recurrent units are pivotal building blocks across a broad spectrum of sequence modeling problems. This paper proposes a recurrently controlled recurrent network (RCRN) for expressive and powerful sequence encoding. More concretely, the key idea behind our approach is to learn the recurrent gating functions using recurrent networks. Our architecture is split into two components - a controller cell and a listener cell whereby the recurrent controller actively influences the compositionality of the listener cell. We conduct extensive experiments on a myriad of tasks in the NLP domain such as sentiment analysis (SST, IMDb, Amazon reviews, etc.), question classification (TREC), entailment classification (SNLI, SciTail), answer selection (WikiQA, TrecQA) and reading comprehension (NarrativeQA). Across all 26 datasets, our results demonstrate that RCRN not only consistently outperforms BiLSTMs but also stacked BiLSTMs, suggesting that our controller architecture might be a suitable replacement for the widely adopted stacked architecture. Additionally, RCRN achieves state-of-the-art results on several well-established datasets.


Densely Connected Attention Propagation for Reading Comprehension

Neural Information Processing Systems

We propose DecaProp (Densely Connected Attention Propagation), a new densely connected neural architecture for reading comprehension (RC). There are two distinct characteristics of our model. Firstly, our model densely connects all pairwise layers of the network, modeling relationships between passage and query across all hierarchical levels. Secondly, the dense connectors in our network are learned via attention instead of standard residual skip-connectors. To this end, we propose novel Bidirectional Attention Connectors (BAC) for efficiently forging connections throughout the network. We conduct extensive experiments on four challenging RC benchmarks. Our proposed approach achieves state-of-the-art results on all four, outperforming existing baselines by up to 2.6% to 14.2% in absolute F1 score.


Densely Connected Attention Propagation for Reading Comprehension

Neural Information Processing Systems

We propose DecaProp (Densely Connected Attention Propagation), a new densely connected neural architecture for reading comprehension (RC). There are two distinct characteristics of our model. Firstly, our model densely connects all pairwise layers of the network, modeling relationships between passage and query across all hierarchical levels. Secondly, the dense connectors in our network are learned via attention instead of standard residual skip-connectors. To this end, we propose novel Bidirectional Attention Connectors (BAC) for efficiently forging connections throughout the network. We conduct extensive experiments on four challenging RC benchmarks. Our proposed approach achieves state-of-the-art results on all four, outperforming existing baselines by up to 2.6% to 14.2% in absolute F1 score.


Recurrently Controlled Recurrent Networks

Neural Information Processing Systems

Recurrent neural networks (RNNs) such as long short-term memory and gated recurrent units are pivotal building blocks across a broad spectrum of sequence modeling problems. This paper proposes a recurrently controlled recurrent network (RCRN) for expressive and powerful sequence encoding. More concretely, the key idea behind our approach is to learn the recurrent gating functions using recurrent networks. Our architecture is split into two components - a controller cell and a listener cell whereby the recurrent controller actively influences the compositionality of the listener cell. We conduct extensive experiments on a myriad of tasks in the NLP domain such as sentiment analysis (SST, IMDb, Amazon reviews, etc.), question classification (TREC), entailment classification (SNLI, SciTail), answer selection (WikiQA, TrecQA) and reading comprehension (NarrativeQA). Across all 26 datasets, our results demonstrate that RCRN not only consistently outperforms BiLSTMs but also stacked BiLSTMs, suggesting that our controller architecture might be a suitable replacement for the widely adopted stacked architecture. Additionally, RCRN achieves state-of-the-art results on several well-established datasets.


Recurrently Controlled Recurrent Networks

arXiv.org Artificial Intelligence

Recurrent neural networks (RNNs) such as long short-term memory and gated recurrent units are pivotal building blocks across a broad spectrum of sequence modeling problems. This paper proposes a recurrently controlled recurrent network (RCRN) for expressive and powerful sequence encoding. More concretely, the key idea behind our approach is to learn the recurrent gating functions using recurrent networks. Our architecture is split into two components - a controller cell and a listener cell whereby the recurrent controller actively influences the compositionality of the listener cell. We conduct extensive experiments on a myriad of tasks in the NLP domain such as sentiment analysis (SST, IMDb, Amazon reviews, etc.), question classification (TREC), entailment classification (SNLI, SciTail), answer selection (WikiQA, TrecQA) and reading comprehension (NarrativeQA). Across all 26 datasets, our results demonstrate that RCRN not only consistently outperforms BiLSTMs but also stacked BiLSTMs, suggesting that our controller architecture might be a suitable replacement for the widely adopted stacked architecture.


Densely Connected Attention Propagation for Reading Comprehension

arXiv.org Artificial Intelligence

We propose DecaProp (Densely Connected Attention Propagation), a new densely connected neural architecture for reading comprehension (RC). There are two distinct characteristics of our model. Firstly, our model densely connects all pairwise layers of the network, modeling relationships between passage and query across all hierarchical levels. Secondly, the dense connectors in our network are learned via attention instead of standard residual skip-connectors. To this end, we propose novel Bidirectional Attention Connectors (BAC) for efficiently forging connections throughout the network. We conduct extensive experiments on four challenging RC benchmarks. Our proposed approach achieves state-of-the-art results on all four, outperforming existing baselines by up to $2.6\%-14.2\%$ in absolute F1 score.