Hovy, Eduard


Controllable Invariance through Adversarial Feature Learning

arXiv.org Artificial Intelligence

Learning meaningful representations that maintain the content necessary for a particular task while filtering away detrimental variations is a problem of great interest in machine learning. In this paper, we tackle the problem of learning representations invariant to a specific factor or trait of data. The representation learning process is formulated as an adversarial minimax game. We analyze the optimal equilibrium of such a game and find that it amounts to maximizing the uncertainty of inferring the detrimental factor given the representation while maximizing the certainty of making task-specific predictions. On three benchmark tasks, namely fair and bias-free classification, language-independent generation, and lighting-independent image classification, we show that the proposed framework induces an invariant representation, and leads to better generalization evidenced by the improved performance.


RACE: Large-scale ReAding Comprehension Dataset From Examinations

arXiv.org Artificial Intelligence

We present RACE, a new dataset for benchmark evaluation of methods in the reading comprehension task. Collected from the English exams for middle and high school Chinese students in the age range between 12 to 18, RACE consists of near 28,000 passages and near 100,000 questions generated by human experts (English instructors), and covers a variety of topics which are carefully designed for evaluating the students' ability in understanding and reasoning. In particular, the proportion of questions that requires reasoning is much larger in RACE than that in other benchmark datasets for reading comprehension, and there is a significant gap between the performance of the state-of-the-art models (43%) and the ceiling human performance (95%). We hope this new dataset can serve as a valuable resource for research and evaluation in machine comprehension. The dataset is freely available at http://www.cs.cmu.edu/~glai1/data/race/ and the code is available at https://github.com/qizhex/RACE_AR_baselines.


An Active Learning Approach to Coreference Resolution

AAAI Conferences

In this paper, we define the problem of coreference resolution in text as one of clustering with pairwise constraints where human experts are asked to provide pairwise constraints (pairwise judgments of coreferentiality) to guide the clustering process. Positing that these pairwise judgments are easy to obtain from humans given the right context, we show that with significantly lower number of pairwise judgments and feature-engineering effort, we can achieve competitive coreference performance. Further, we describe an active learning strategy that minimizes the overall number of such pairwise judgments needed by asking the most informative questions to human experts at each step of coreference resolution. We evaluate this hypothesis and our algorithms on both entity and event coreference tasks and on two languages.


Using Part-Of Relations for Discovering Causality

AAAI Conferences

Historically, causal markers, syntactic structures and connectives have been the sole identifying features for automatically extracting causal relations in natural language discourse. However various connectives such as “and,” prepositions such as “as” and other syntactic structures are highly ambiguous in nature, and it is clear that one cannot solely rely on lexico-syntactic markers for detection of causal phenomenon in discourse. This paper introduces the theory of granularity and describes different approaches to identify granularity in natural language. As causality is often granular in nature, we use granularity relations to discover and infer the presence of causal relations in text. We compare this with causal relations identified using just causal markers. We achieve a precision of 0.91 and a recall of 0.79 using granularity for causal relation detection, as compared to a precision of 0.79 and a recall of 0.44 using pure causal markers for causality detection.


Toward Virtual Humans

AI Magazine

This article describes the virtual humans developed as part of the Mission Rehearsal Exercise project, a virtual reality-based training system. This project is an ambitious exercise in integration, both in the sense of integrating technology with entertainment industry content, but also in that we have joined a number of component technologies that have not been integrated before. This integration has not only raised new research issues, but it has also suggested some new approaches to difficult problems. We describe the key capabilities of the virtual humans, including task representation and reasoning, natural language dialogue, and emotion reasoning, and show how these capabilities are integrated to provide more human-level intelligence than would otherwise be possible.


Toward Virtual Humans

AI Magazine

This article describes the virtual humans developed as part of the Mission Rehearsal Exercise project, a virtual reality-based training system. This project is an ambitious exercise in integration, both in the sense of integrating technology with entertainment industry content, but also in that we have joined a number of component technologies that have not been integrated before. This integration has not only raised new research issues, but it has also suggested some new approaches to difficult problems. We describe the key capabilities of the virtual humans, including task representation and reasoning, natural language dialogue, and emotion reasoning, and show how these capabilities are integrated to provide more human-level intelligence than would otherwise be possible.


The AAAI Spring Symposia

AI Magazine

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, held the 1998 Spring Symposium Series on 23 to 25 March at Stanford University. The topics of the eight symposia were (1) Applying Machine Learning to Discourse Processing, (2) Integrating Robotic Research: Taking the Next Leap, (3) Intelligent Environments, (4) Intelligent Text Summarization, (5) Interactive and Mixed-Initiative Decision-Theoretic Systems, (6) Multimodal Reasoning, (7) Prospects for a Common-Sense Theory of Causation, and (8) Satisficing Models.


The AAAI Spring Symposia

AI Magazine

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, held the 1998 Spring Symposium Series on 23 to 25 March at Stanford University. The topics of the eight symposia were (1) Applying Machine Learning to Discourse Processing, (2) Integrating Robotic Research: Taking the Next Leap, (3) Intelligent Environments, (4) Intelligent Text Summarization, (5) Interactive and Mixed-Initiative Decision-Theoretic Systems, (6) Multimodal Reasoning, (7) Prospects for a Common-Sense Theory of Causation, and (8) Satisficing Models.


The Seventh International Workshop on Natural Language Generation

AI Magazine

The Seventh International Workshop on Natural Language Generation was held from 21 to 24 June 1994 in Kennebunkport, Maine. Sixty-seven people from 13 countries attended this 4-day meeting on the study of natural language generation in computational linguistics and AI. The goal of the workshop was to introduce new, cutting-edge work to the community and provide an atmosphere in which discussion and exchange would flourish.


The Seventh International Workshop on Natural Language Generation

AI Magazine

The Seventh International Workshop on Natural Language Generation was held from 21 to 24 June 1994 in Kennebunkport, Maine. Sixty-seven people from 13 countries attended this 4-day meeting on the study of natural language generation in computational linguistics and AI. The goal of the workshop was to introduce new, cutting-edge work to the community and provide an atmosphere in which discussion and exchange would flourish.