Hertzberg, Joachim


Finding Ways to Get the Job Done: An Affordance-Based Approach

AAAI Conferences

Adapting plans to changes in the environment by finding alternatives and taking advantage of opportunities is a common human behavior. The need for such behavior is often rooted in the uncertainty produced by our incomplete knowledge of the environment. While several existing planning approaches deal with such issues, artificial agents still lack the robustness that humans display in accomplishing their tasks. In this work, we address this brittleness by combining Hierarchical Task Network planning, Description Logics, and the notions of affordances and conceptual similarity. The approach allows a domestic service robot to find ways to get a job done by making substitutions. We show how knowledge is modeled, how the reasoning process is used to create a constrained planning problem, and how the system handles cases where plan generation fails due to missing/unavailable objects. The results of the evaluation for two tasks in a domestic service domain show the viability of the approach in finding and making the appropriate goal transformations.


An Ontology-based Multi-level Robot Architecture for Learning from Experiences

AAAI Conferences

One way to improve the robustness and flexibility of robot performance is to let the robot learn from its experiences. In this paper, we describe the architecture and knowledge-representation framework for a service robot being developed in the EU project RACE, and present examples illustrating how learning from experiences will be achieved. As a unique innovative feature, the framework combines memory records of low-level robot activities with ontology-based high-level semantic descriptions.