Collaborating Authors

Hedayatnia, Behnam

Rome was built in 1776: A Case Study on Factual Correctness in Knowledge-Grounded Response Generation Artificial Intelligence

Recently neural response generation models have leveraged large pre-trained transformer models and knowledge snippets to generate relevant and informative responses. However, this does not guarantee that generated responses are factually correct. In this paper, we examine factual correctness in knowledge-grounded neural response generation models. We present a human annotation setup to identify three different response types: responses that are factually consistent with respect to the input knowledge, responses that contain hallucinated knowledge, and non-verifiable chitchat style responses. We use this setup to annotate responses generated using different stateof-the-art models, knowledge snippets, and decoding strategies. In addition, to facilitate the development of a factual consistency detector, we automatically create a new corpus called Conv-FEVER that is adapted from the Wizard of Wikipedia dataset and includes factually consistent and inconsistent responses. We demonstrate the benefit of our Conv-FEVER dataset by showing that the models trained on this data perform reasonably well to detect factually inconsistent responses with respect to the provided knowledge through evaluation on our human annotated data. We will release the Conv-FEVER dataset and the human annotated responses.

Policy-Driven Neural Response Generation for Knowledge-Grounded Dialogue Systems Artificial Intelligence

Open-domain dialogue systems aim to generate relevant, informative and engaging responses. Seq2seq neural response generation approaches do not have explicit mechanisms to control the content or style of the generated response, and frequently result in uninformative utterances. In this paper, we propose using a dialogue policy to plan the content and style of target responses in the form of an action plan, which includes knowledge sentences related to the dialogue context, targeted dialogue acts, topic information, etc. The attributes within the action plan are obtained by automatically annotating the publicly released Topical-Chat dataset. We condition neural response generators on the action plan which is then realized as target utterances at the turn and sentence levels. We also investigate different dialogue policy models to predict an action plan given the dialogue context. Through automated and human evaluation, we measure the appropriateness of the generated responses and check if the generation models indeed learn to realize the given action plans. We demonstrate that a basic dialogue policy that operates at the sentence level generates better responses in comparison to turn level generation as well as baseline models with no action plan. Additionally the basic dialogue policy has the added effect of controllability.

Are Neural Open-Domain Dialog Systems Robust to Speech Recognition Errors in the Dialog History? An Empirical Study Artificial Intelligence

Large end-to-end neural open-domain chatbots are becoming increasingly popular. However, research on building such chatbots has typically assumed that the user input is written in nature and it is not clear whether these chatbots would seamlessly integrate with automatic speech recognition (ASR) models to serve the speech modality. We aim to bring attention to this important question by empirically studying the effects of various types of synthetic and actual ASR hypotheses in the dialog history on TransferTransfo, a state-of-the-art Generative Pre-trained Transformer (GPT) based neural open-domain dialog system from the NeurIPS ConvAI2 challenge. We observe that TransferTransfo trained on written data is very sensitive to such hypotheses introduced to the dialog history during inference time. As a baseline mitigation strategy, we introduce synthetic ASR hypotheses to the dialog history during training and observe marginal improvements, demonstrating the need for further research into techniques to make end-to-end open-domain chatbots fully speech-robust. To the best of our knowledge, this is the first study to evaluate the effects of synthetic and actual ASR hypotheses on a state-of-the-art neural open-domain dialog system and we hope it promotes speech-robustness as an evaluation criterion in open-domain dialog.

Beyond Domain APIs: Task-oriented Conversational Modeling with Unstructured Knowledge Access Artificial Intelligence

Most prior work on task-oriented dialogue systems are restricted to a limited coverage of domain APIs, while users oftentimes have domain related requests that are not covered by the APIs. In this paper, we propose to expand coverage of task-oriented dialogue systems by incorporating external unstructured knowledge sources. We define three sub-tasks: knowledge-seeking turn detection, knowledge selection, and knowledge-grounded response generation, which can be modeled individually or jointly. We introduce an augmented version of MultiWOZ 2.1, which includes new out-of-API-coverage turns and responses grounded on external knowledge sources. We present baselines for each sub-task using both conventional and neural approaches. Our experimental results demonstrate the need for further research in this direction to enable more informative conversational systems.

Towards Coherent and Engaging Spoken Dialog Response Generation Using Automatic Conversation Evaluators Artificial Intelligence

Encoder-decoder based neural architectures serve as the basis of state-of-the-art approaches in end-to-end open domain dialog systems. Since most of such systems are trained with a maximum likelihood(MLE) objective they suffer from issues such as lack of generalizability and the generic response problem, i.e., a system response that can be an answer to a large number of user utterances, e.g., "Maybe, I don't know." Having explicit feedback on the relevance and interestingness of a system response at each turn can be a useful signal for mitigating such issues and improving system quality by selecting responses from different approaches. Towards this goal, we present a system that evaluates chatbot responses at each dialog turn for coherence and engagement. Our system provides explicit turn-level dialog quality feedback, which we show to be highly correlated with human evaluation. To show that incorporating this feedback in the neural response generation models improves dialog quality, we present two different and complementary mechanisms to incorporate explicit feedback into a neural response generation model: reranking and direct modification of the loss function during training. Our studies show that a response generation model that incorporates these combined feedback mechanisms produce more engaging and coherent responses in an open-domain spoken dialog setting, significantly improving the response quality using both automatic and human evaluation.

Advancing the State of the Art in Open Domain Dialog Systems through the Alexa Prize Artificial Intelligence

Building open domain conversational systems that allow users to have engaging conversations on topics of their choice is a challenging task. Alexa Prize was launched in 2016 to tackle the problem of achieving natural, sustained, coherent and engaging open-domain dialogs. In the second iteration of the competition in 2018, university teams advanced the state of the art by using context in dialog models, leveraging knowledge graphs for language understanding, handling complex utterances, building statistical and hierarchical dialog managers, and leveraging model-driven signals from user responses. The 2018 competition also included the provision of a suite of tools and models to the competitors including the CoBot (conversational bot) toolkit, topic and dialog act detection models, conversation evaluators, and a sensitive content detection model so that the competing teams could focus on building knowledge-rich, coherent and engaging multi-turn dialog systems. This paper outlines the advances developed by the university teams as well as the Alexa Prize team to achieve the common goal of advancing the science of Conversational AI. We address several key open-ended problems such as conversational speech recognition, open domain natural language understanding, commonsense reasoning, statistical dialog management and dialog evaluation. These collaborative efforts have driven improved experiences by Alexa users to an average rating of 3.61, median duration of 2 mins 18 seconds, and average turns to 14.6, increases of 14%, 92%, 54% respectively since the launch of the 2018 competition. For conversational speech recognition, we have improved our relative Word Error Rate by 55% and our relative Entity Error Rate by 34% since the launch of the Alexa Prize. Socialbots improved in quality significantly more rapidly in 2018, in part due to the release of the CoBot toolkit, with new entrants attaining an average rating of 3.35 just 1 week into the semifinals, compared to 9 weeks in the 2017 competition.

On Evaluating and Comparing Open Domain Dialog Systems Artificial Intelligence

Conversational agents are exploding in popularity. However, much work remains in the area of non goal-oriented conversations, despite significant growth in research interest over recent years. To advance the state of the art in conversational AI, Amazon launched the Alexa Prize, a 2.5-million dollar university competition where sixteen selected university teams built conversational agents to deliver the best social conversational experience. Alexa Prize provided the academic community with the unique opportunity to perform research with a live system used by millions of users. The subjectivity associated with evaluating conversations is key element underlying the challenge of building non-goal oriented dialogue systems. In this paper, we propose a comprehensive evaluation strategy with multiple metrics designed to reduce subjectivity by selecting metrics which correlate well with human judgement. The proposed metrics provide granular analysis of the conversational agents, which is not captured in human ratings. We show that these metrics can be used as a reasonable proxy for human judgment. We provide a mechanism to unify the metrics for selecting the top performing agents, which has also been applied throughout the Alexa Prize competition. To our knowledge, to date it is the largest setting for evaluating agents with millions of conversations and hundreds of thousands of ratings from users. We believe that this work is a step towards an automatic evaluation process for conversational AIs.