Goto

Collaborating Authors

Hakkani-Tur, Dilek


Analyzing the Limits of Self-Supervision in Handling Bias in Language

arXiv.org Artificial Intelligence

Prompting inputs with natural language task descriptions has emerged as a popular mechanism to elicit reasonably accurate outputs from large-scale generative language models with little to no in-context supervision. This also helps gain insight into how well language models capture the semantics of a wide range of downstream tasks purely from self-supervised pre-training on massive corpora of unlabeled text. Such models have naturally also been exposed to a lot of undesirable content like racist and sexist language and there is limited work on awareness of models along these dimensions. In this paper, we define and comprehensively evaluate how well such language models capture the semantics of four tasks for bias: diagnosis, identification, extraction and rephrasing. We define three broad classes of task descriptions for these tasks: statement, question, and completion, with numerous lexical variants within each class. We study the efficacy of prompting for each task using these classes and the null task description across several decoding methods and few-shot examples. Our analyses indicate that language models are capable of performing these tasks to widely varying degrees across different bias dimensions, such as gender and political affiliation. We believe our work is an important step towards unbiased language models by quantifying the limits of current self-supervision objectives at accomplishing such sociologically challenging tasks.


Sketching as a Tool for Understanding and Accelerating Self-attention for Long Sequences

arXiv.org Machine Learning

Transformer-based models are not efficient in processing long sequences due to the quadratic space and time complexity of the self-attention modules. To address this limitation, Linformer and Informer are proposed to reduce the quadratic complexity to linear (modulo logarithmic factors) via low-dimensional projection and row selection respectively. These two models are intrinsically connected, and to understand their connection, we introduce a theoretical framework of matrix sketching. Based on the theoretical analysis, we propose Skeinformer to accelerate self-attention and further improve the accuracy of matrix approximation to self-attention with three carefully designed components: column sampling, adaptive row normalization and pilot sampling reutilization. Experiments on the Long Range Arena (LRA) benchmark demonstrate that our methods outperform alternatives with a consistently smaller time/space footprint.


TEACh: Task-driven Embodied Agents that Chat

arXiv.org Artificial Intelligence

Robots operating in human spaces must be able to engage in natural language interaction with people, both understanding and executing instructions, and using conversation to resolve ambiguity and recover from mistakes. To study this, we introduce TEACh, a dataset of over 3,000 human--human, interactive dialogues to complete household tasks in simulation. A Commander with access to oracle information about a task communicates in natural language with a Follower. The Follower navigates through and interacts with the environment to complete tasks varying in complexity from "Make Coffee" to "Prepare Breakfast", asking questions and getting additional information from the Commander. We propose three benchmarks using TEACh to study embodied intelligence challenges, and we evaluate initial models' abilities in dialogue understanding, language grounding, and task execution.


Rome was built in 1776: A Case Study on Factual Correctness in Knowledge-Grounded Response Generation

arXiv.org Artificial Intelligence

Recently neural response generation models have leveraged large pre-trained transformer models and knowledge snippets to generate relevant and informative responses. However, this does not guarantee that generated responses are factually correct. In this paper, we examine factual correctness in knowledge-grounded neural response generation models. We present a human annotation setup to identify three different response types: responses that are factually consistent with respect to the input knowledge, responses that contain hallucinated knowledge, and non-verifiable chitchat style responses. We use this setup to annotate responses generated using different stateof-the-art models, knowledge snippets, and decoding strategies. In addition, to facilitate the development of a factual consistency detector, we automatically create a new corpus called Conv-FEVER that is adapted from the Wizard of Wikipedia dataset and includes factually consistent and inconsistent responses. We demonstrate the benefit of our Conv-FEVER dataset by showing that the models trained on this data perform reasonably well to detect factually inconsistent responses with respect to the provided knowledge through evaluation on our human annotated data. We will release the Conv-FEVER dataset and the human annotated responses.


Towards Zero and Few-shot Knowledge-seeking Turn Detection in Task-orientated Dialogue Systems

arXiv.org Artificial Intelligence

Most prior work on task-oriented dialogue systems is restricted to supporting domain APIs. However, users may have requests that are out of the scope of these APIs. This work focuses on identifying such user requests. Existing methods for this task mainly rely on fine-tuning pre-trained models on large annotated data. We propose a novel method, REDE, based on adaptive representation learning and density estimation. REDE can be applied to zero-shot cases, and quickly learns a high-performing detector with only a few shots by updating less than 3K parameters. We demonstrate REDE's competitive performance on DSTC9 data and our newly collected test set.


Can I Be of Further Assistance? Using Unstructured Knowledge Access to Improve Task-oriented Conversational Modeling

arXiv.org Artificial Intelligence

Most prior work on task-oriented dialogue systems are restricted to limited coverage of domain APIs. However, users oftentimes have requests that are out of the scope of these APIs. This work focuses on responding to these beyond-API-coverage user turns by incorporating external, unstructured knowledge sources. Our approach works in a pipelined manner with knowledge-seeking turn detection, knowledge selection, and response generation in sequence. We introduce novel data augmentation methods for the first two steps and demonstrate that the use of information extracted from dialogue context improves the knowledge selection and end-to-end performances. Through experiments, we achieve state-of-the-art performance for both automatic and human evaluation metrics on the DSTC9 Track 1 benchmark dataset, validating the effectiveness of our contributions.


Dialog Simulation with Realistic Variations for Training Goal-Oriented Conversational Systems

arXiv.org Artificial Intelligence

Goal-oriented dialog systems enable users to complete specific goals like requesting information about a movie or booking a ticket. Typically the dialog system pipeline contains multiple ML models, including natural language understanding, state tracking and action prediction (policy learning). These models are trained through a combination of supervised or reinforcement learning methods and therefore require collection of labeled domain specific datasets. However, collecting annotated datasets with language and dialog-flow variations is expensive, time-consuming and scales poorly due to human involvement. In this paper, we propose an approach for automatically creating a large corpus of annotated dialogs from a few thoroughly annotated sample dialogs and the dialog schema. Our approach includes a novel goal-sampling technique for sampling plausible user goals and a dialog simulation technique that uses heuristic interplay between the user and the system (Alexa), where the user tries to achieve the sampled goal. We validate our approach by generating data and training three different downstream conversational ML models. We achieve 18 ? 50% relative accuracy improvements on a held-out test set compared to a baseline dialog generation approach that only samples natural language and entity value variations from existing catalogs but does not generate any novel dialog flow variations. We also qualitatively establish that the proposed approach is better than the baseline. Moreover, several different conversational experiences have been built using this method, which enables customers to have a wide variety of conversations with Alexa.


Example-Driven Intent Prediction with Observers

arXiv.org Artificial Intelligence

A key challenge of dialog systems research is to effectively and efficiently adapt to new domains. A scalable paradigm for adaptation necessitates the development of generalizable models that perform well in few-shot settings. In this paper, we focus on the intent classification problem which aims to identify user intents given utterances addressed to the dialog system. We propose two approaches for improving the generalizability of utterance classification models: (1) example-driven training and (2) observers. Example-driven training learns to classify utterances by comparing to examples, thereby using the underlying encoder as a sentence similarity model. Prior work has shown that BERT-like models tend to attribute a significant amount of attention to the [CLS] token, which we hypothesize results in diluted representations. Observers are tokens that are not attended to, and are an alternative to the [CLS] token. The proposed methods attain state-of-the-art results on three intent prediction datasets (Banking, Clinc}, and HWU) in both the full data and few-shot (10 examples per intent) settings. Furthermore, we demonstrate that the proposed approach can transfer to new intents and across datasets without any additional training.


DialoGLUE: A Natural Language Understanding Benchmark for Task-Oriented Dialogue

arXiv.org Artificial Intelligence

A long-standing goal of task-oriented dialogue research is the ability to flexibly adapt dialogue models to new domains. To progress research in this direction, we introduce DialoGLUE (Dialogue Language Understanding Evaluation), a public benchmark consisting of 7 task-oriented dialogue datasets covering 4 distinct natural language understanding tasks, designed to encourage dialogue research in representation-based transfer, domain adaptation, and sample-efficient task learning. We release several strong baseline models, demonstrating performance improvements over a vanilla BERT architecture and state-of-the-art results on 5 out of 7 tasks, by pre-training on a large open-domain dialogue corpus and task-adaptive self-supervised training. Through the DialoGLUE benchmark, the baseline methods, and our evaluation scripts, we hope to facilitate progress towards the goal of developing more general task-oriented dialogue models.


Policy-Driven Neural Response Generation for Knowledge-Grounded Dialogue Systems

arXiv.org Artificial Intelligence

Open-domain dialogue systems aim to generate relevant, informative and engaging responses. Seq2seq neural response generation approaches do not have explicit mechanisms to control the content or style of the generated response, and frequently result in uninformative utterances. In this paper, we propose using a dialogue policy to plan the content and style of target responses in the form of an action plan, which includes knowledge sentences related to the dialogue context, targeted dialogue acts, topic information, etc. The attributes within the action plan are obtained by automatically annotating the publicly released Topical-Chat dataset. We condition neural response generators on the action plan which is then realized as target utterances at the turn and sentence levels. We also investigate different dialogue policy models to predict an action plan given the dialogue context. Through automated and human evaluation, we measure the appropriateness of the generated responses and check if the generation models indeed learn to realize the given action plans. We demonstrate that a basic dialogue policy that operates at the sentence level generates better responses in comparison to turn level generation as well as baseline models with no action plan. Additionally the basic dialogue policy has the added effect of controllability.