Goldsmith, Judy



On the Complexity of Bribery and Manipulation in Tournaments with Uncertain Information

AAAI Conferences

We study the computational complexity of optimal bribery and manipulation schemes for sports tournaments with uncertain information: cup; challenge or caterpillar; and round robin. Our results carry over to the equivalent voting rules: sequential pair-wise elections, cup, and Copeland, when the set of candidates is exactly the set of voters. This restriction creates new difficulties for most existing algorithms. The complexity of bribery and manipulation are well studied, almost always assuming deterministic information about votes and results. We assume that for candidates i and j the probability that i beats j and the costs of lowering each probability by fixed increments are known to the manipulators. We provide complexity analyses for cup, challenge, and round robin competitions ranging from polynomial time to NP^PP. This shows that the introduction of uncertainty into the reasoning process drastically increases the complexity of bribery problems in some instances.


Preference Handling for Artificial Intelligence

AI Magazine

This article explains the benefits of preferences for AI systems and draws a picture of current AI research on preference handling. It thus provides an introduction to the topics covered by this special issue on preference handling.


Preference Handling for Artificial Intelligence

AI Magazine

This article explains the benefits of preferences for AI systems and draws a picture of current AI research on preference handling. It thus provides an introduction to the topics covered by this special issue on preference handling.


AAAI-07 Workshop Reports

AI Magazine

The AAAI-07 workshop program was held Sunday and Monday, July 22-23, in Vancouver, British Columbia, Canada. The program included the following thirteen workshops: (1) Acquiring Planning Knowledge via Demonstration; (2) Configuration; (3) Evaluating Architectures for Intelligence; (4) Evaluation Methods for Machine Learning; (5) Explanation-Aware Computing; (6) Human Implications of Human-Robot Interaction; (7) Intelligent Techniques for Web Personalization; (8) Plan, Activity, and Intent Recognition; (9) Preference Handling for Artificial Intelligence; (10) Semantic e-Science; (11) Spatial and Temporal Reasoning; (12) Trading Agent Design and Analysis; and (13) Information Integration on the Web.