Collaborating Authors

Goel, Rahul

Towards Universal Dialogue Act Tagging for Task-Oriented Dialogues Artificial Intelligence

Machine learning approaches for building task-oriented dialogue systems require large conversational datasets with labels to train on. We are interested in building task-oriented dialogue systems from human-human conversations, which may be available in ample amounts in existing customer care center logs or can be collected from crowd workers. Annotating these datasets can be prohibitively expensive. Recently multiple annotated task-oriented human-machine dialogue datasets have been released, however their annotation schema varies across different collections, even for well-defined categories such as dialogue acts (DAs). We propose a Universal DA schema for task-oriented dialogues and align existing annotated datasets with our schema. Our aim is to train a Universal DA tagger (U-DAT) for task-oriented dialogues and use it for tagging human-human conversations. We investigate multiple datasets, propose manual and automated approaches for aligning the different schema, and present results on a target corpus of human-human dialogues. In unsupervised learning experiments we achieve an F1 score of 54.1% on system turns in human-human dialogues. In a semi-supervised setup, the F1 score increases to 57.7% which would otherwise require at least 1.7K manually annotated turns. For new domains, we show further improvements when unlabeled or labeled target domain data is available.

MultiWOZ 2.1: Multi-Domain Dialogue State Corrections and State Tracking Baselines Artificial Intelligence

MultiWOZ is a recently-released multidomain dialogue dataset spanning 7 distinct domains and containing over 10000 dialogues, one of the largest resources of its kind to-date. Though an immensely useful resource, while building different classes of dialogue state tracking models using MultiWOZ, we detected substantial errors in the state annotations and dialogue utterances which negatively impacted the performance of our models. In order to alleviate this problem, we use crowdsourced workers to fix the state annotations and utterances in the original version of the data. Our correction process results in changes to over 32% of state annotations across 40% of the dialogue turns. In addition, we fix 146 dialogue utterances throughout the dataset focusing in particular on addressing slot value errors represented within the conversations. We then benchmark a number of state-of-the-art dialogue state tracking models on this new MultiWOZ 2.1 dataset and show joint state tracking performance on the corrected state annotations. We are publicly releasing MultiWOZ 2.1 to the community, hoping that this dataset resource will allow for more effective dialogue state tracking models to be built in the future.

HyST: A Hybrid Approach for Flexible and Accurate Dialogue State Tracking Artificial Intelligence

Recent works on end-to-end trainable neural network based approaches have demonstrated state-of-the-art results on dialogue state tracking. The best performing approaches estimate a probability distribution over all possible slot values. However, these approaches do not scale for large value sets commonly present in real-life applications and are not ideal for tracking slot values that were not observed in the training set. To tackle these issues, candidate-generation-based approaches have been proposed. These approaches estimate a set of values that are possible at each turn based on the conversation history and/or language understanding outputs, and hence enable state tracking over unseen values and large value sets however, they fall short in terms of performance in comparison to the first group. In this work, we analyze the performance of these two alternative dialogue state tracking methods, and present a hybrid approach (HyST) which learns the appropriate method for each slot type. To demonstrate the effectiveness of HyST on a rich-set of slot types, we experiment with the recently released MultiWOZ-2.0 multi-domain, task-oriented dialogue-dataset. Our experiments show that HyST scales to multi-domain applications. Our best performing model results in a relative improvement of 24% and 10% over the previous SOTA and our best baseline respectively.

Towards Coherent and Engaging Spoken Dialog Response Generation Using Automatic Conversation Evaluators Artificial Intelligence

Encoder-decoder based neural architectures serve as the basis of state-of-the-art approaches in end-to-end open domain dialog systems. Since most of such systems are trained with a maximum likelihood(MLE) objective they suffer from issues such as lack of generalizability and the generic response problem, i.e., a system response that can be an answer to a large number of user utterances, e.g., "Maybe, I don't know." Having explicit feedback on the relevance and interestingness of a system response at each turn can be a useful signal for mitigating such issues and improving system quality by selecting responses from different approaches. Towards this goal, we present a system that evaluates chatbot responses at each dialog turn for coherence and engagement. Our system provides explicit turn-level dialog quality feedback, which we show to be highly correlated with human evaluation. To show that incorporating this feedback in the neural response generation models improves dialog quality, we present two different and complementary mechanisms to incorporate explicit feedback into a neural response generation model: reranking and direct modification of the loss function during training. Our studies show that a response generation model that incorporates these combined feedback mechanisms produce more engaging and coherent responses in an open-domain spoken dialog setting, significantly improving the response quality using both automatic and human evaluation.

On Evaluating and Comparing Open Domain Dialog Systems Artificial Intelligence

Conversational agents are exploding in popularity. However, much work remains in the area of non goal-oriented conversations, despite significant growth in research interest over recent years. To advance the state of the art in conversational AI, Amazon launched the Alexa Prize, a 2.5-million dollar university competition where sixteen selected university teams built conversational agents to deliver the best social conversational experience. Alexa Prize provided the academic community with the unique opportunity to perform research with a live system used by millions of users. The subjectivity associated with evaluating conversations is key element underlying the challenge of building non-goal oriented dialogue systems. In this paper, we propose a comprehensive evaluation strategy with multiple metrics designed to reduce subjectivity by selecting metrics which correlate well with human judgement. The proposed metrics provide granular analysis of the conversational agents, which is not captured in human ratings. We show that these metrics can be used as a reasonable proxy for human judgment. We provide a mechanism to unify the metrics for selecting the top performing agents, which has also been applied throughout the Alexa Prize competition. To our knowledge, to date it is the largest setting for evaluating agents with millions of conversations and hundreds of thousands of ratings from users. We believe that this work is a step towards an automatic evaluation process for conversational AIs.

Flexible and Scalable State Tracking Framework for Goal-Oriented Dialogue Systems Artificial Intelligence

Goal-oriented dialogue systems typically rely on components specifically developed for a single task or domain. This limits such systems in two different ways: If there is an update in the task domain, the dialogue system usually needs to be updated or completely re-trained. It is also harder to extend such dialogue systems to different and multiple domains. The dialogue state tracker in conventional dialogue systems is one such component - it is usually designed to fit a well-defined application domain. For example, it is common for a state variable to be a categorical distribution over a manually-predefined set of entities (Henderson et al., 2013), resulting in an inflexible and hard-to-extend dialogue system. In this paper, we propose a new approach for dialogue state tracking that can generalize well over multiple domains without incorporating any domain-specific knowledge. Under this framework, discrete dialogue state variables are learned independently and the information of a predefined set of possible values for dialogue state variables is not required. Furthermore, it enables adding arbitrary dialogue context as features and allows for multiple values to be associated with a single state variable. These characteristics make it much easier to expand the dialogue state space. We evaluate our framework using the widely used dialogue state tracking challenge data set (DSTC2) and show that our framework yields competitive results with other state-of-the-art results despite incorporating little domain knowledge. We also show that this framework can benefit from widely available external resources such as pre-trained word embeddings.

Online Embedding Compression for Text Classification using Low Rank Matrix Factorization Machine Learning

Deep learning models have become state of the art for natural language processing (NLP) tasks, however deploying these models in production system poses significant memory constraints. Existing compression methods are either lossy or introduce significant latency. We propose a compression method that leverages low rank matrix factorization during training,to compress the word embedding layer which represents the size bottleneck for most NLP models. Our models are trained, compressed and then further re-trained on the downstream task to recover accuracy while maintaining the reduced size. Empirically, we show that the proposed method can achieve 90% compression with minimal impact in accuracy for sentence classification tasks, and outperforms alternative methods like fixed-point quantization or offline word embedding compression. We also analyze the inference time and storage space for our method through FLOP calculations, showing that we can compress DNN models by a configurable ratio and regain accuracy loss without introducing additional latency compared to fixed point quantization. Finally, we introduce a novel learning rate schedule, the Cyclically Annealed Learning Rate (CALR), which we empirically demonstrate to outperform other popular adaptive learning rate algorithms on a sentence classification benchmark.

Parsing Coordination for Spoken Language Understanding Machine Learning

ABSTRACT Typical spoken language understanding systems provide narrow semantic parses using a domain-specific ontology. The parses contain intents and slots that are directly consumed by downstream domain applications. In this work we discuss expanding such systems to handle compound entities and intents by introducing a domain-agnostic shallow parser that handles linguistic coordination. We show that our model for parsing coordination learns domain-independent and slot-independent features and is able to segment conjunct boundaries of many different phrasal categories. We also show that using adversarial training can be effective for improving generalization across different slot types for coordination parsing. Index Terms-- spoken language understanding, chunking, coordination 1. INTRODUCTION A typical spoken language understanding (SLU) system maps user utterances to domain-specific semantic representations that can be factored into an intent and slots [1, 2]. For example, an utterance, "what is the weather like in boston" has one intent WeatherInfo and one slot type CityName whose value is "boston." Thus, parsing for such systems is often factored into two separate tasks: intent classification and entity recognition whose results are consumed by downstream domain applications.

Context Aware Conversational Understanding for Intelligent Agents With a Screen

AAAI Conferences

We describe an intelligent context-aware conversational system that incorporates screen context information to service multimodal user requests. Screen content is used for disambiguation of utterances that refer to screen objects and for enabling the user to act upon screen objects using voice commands. We propose a deep learning architecture that jointly models the user utterance and the screen and incorporates detailed screen content features. Our model is trained to optimize end to end semantic accuracy across contextual and non-contextual functionality, therefore learns the desired behavior directly from the data. We show that this approach outperforms a rule-based alternative, and can be extended in a straightforward manner to new contextual use cases. We perform detailed evaluation of contextual and non-contextual use cases and show that our system displays accurate contextual behavior without degrading the performance of non-contextual user requests.