Gens, Robert


Deep Symmetry Networks

Neural Information Processing Systems

The chief difficulty in object recognition is that objects' classes are obscured by a large number of extraneous sources of variability, such as pose and part deformation. These sources of variation can be represented by symmetry groups, sets of composable transformations that preserve object identity. Convolutional neural networks (convnets) achieve a degree of translational invariance by computing feature maps over the translation group, but cannot handle other groups. As a result, these groups' effects have to be approximated by small translations, which often requires augmenting datasets and leads to high sample complexity. In this paper, we introduce deep symmetry networks (symnets), a generalization of convnets that forms feature maps over arbitrary symmetry groups.


On the Latent Variable Interpretation in Sum-Product Networks

arXiv.org Artificial Intelligence

One of the central themes in Sum-Product networks (SPNs) is the interpretation of sum nodes as marginalized latent variables (LVs). This interpretation yields an increased syntactic or semantic structure, allows the application of the EM algorithm and to efficiently perform MPE inference. In literature, the LV interpretation was justified by explicitly introducing the indicator variables corresponding to the LVs' states. However, as pointed out in this paper, this approach is in conflict with the completeness condition in SPNs and does not fully specify the probabilistic model. We propose a remedy for this problem by modifying the original approach for introducing the LVs, which we call SPN augmentation. We discuss conditional independencies in augmented SPNs, formally establish the probabilistic interpretation of the sum-weights and give an interpretation of augmented SPNs as Bayesian networks. Based on these results, we find a sound derivation of the EM algorithm for SPNs. Furthermore, the Viterbi-style algorithm for MPE proposed in literature was never proven to be correct. We show that this is indeed a correct algorithm, when applied to selective SPNs, and in particular when applied to augmented SPNs. Our theoretical results are confirmed in experiments on synthetic data and 103 real-world datasets.


Deep Symmetry Networks

Neural Information Processing Systems

The chief difficulty in object recognition is that objects' classes are obscured by a large number of extraneous sources of variability, such as pose and part deformation. These sources of variation can be represented by symmetry groups, sets of composable transformations that preserve object identity. Convolutional neural networks (convnets) achieve a degree of translational invariance by computing feature maps over the translation group, but cannot handle other groups. As a result, these groups' effects have to be approximated by small translations, which often requires augmenting datasets and leads to high sample complexity. In this paper, we introduce deep symmetry networks (symnets), a generalization of convnets that forms feature maps over arbitrary symmetry groups. Symnets use kernel-based interpolation to tractably tie parameters and pool over symmetry spaces of any dimension. Like convnets, they are trained with backpropagation. The composition of feature transformations through the layers of a symnet provides a new approach to deep learning. Experiments on NORB and MNIST-rot show that symnets over the affine group greatly reduce sample complexity relative to convnets by better capturing the symmetries in the data.


Discriminative Learning of Sum-Product Networks

Neural Information Processing Systems

Sum-product networks are a new deep architecture that can perform fast, exact inference onhigh-treewidth models. Only generative methods for training SPNs have been proposed to date. In this paper, we present the first discriminative training algorithms for SPNs, combining the high accuracy of the former with the representational power and tractability of the latter. We show that the class of tractable discriminative SPNs is broader than the class of tractable generative ones, and propose an efficient backpropagation-style algorithm for computing the gradient of the conditional log likelihood. Standard gradient descent suffers from the diffusion problem, but networks with many layers can be learned reliably using "hard"gradient descent, where marginal inference is replaced by MPE inference (i.e.,inferring the most probable state of the non-evidence variables). The resulting updates have a simple and intuitive form. We test discriminative SPNs on standard image classification tasks. We obtain the best results to date on the CIFAR-10 dataset, using fewer features than prior methods with an SPN architecture thatlearns local image structure discriminatively. We also report the highest published test accuracy on STL-10 even though we only use the labeled portion of the dataset.