Faulkner, Matthew


Scalable Training of Mixture Models via Coresets

Neural Information Processing Systems

How can we train a statistical mixture model on a massive data set? In this paper, we show how to construct coresets for mixtures of Gaussians and natural generalizations. A coreset is a weighted subset of the data, which guarantees that models fitting the coreset will also provide a good fit for the original data set. We show that, perhaps surprisingly, Gaussian mixtures admit coresets of size independent of the size of the data set. More precisely, we prove that a weighted set of $O(dk 3/\eps 2)$ data points suffices for computing a $(1 \eps)$-approximation for the optimal model on the original $n$ data points.


Training Gaussian Mixture Models at Scale via Coresets

arXiv.org Machine Learning

How can we train a statistical mixture model on a massive data set? In this work we show how to construct coresets for mixtures of Gaussians. A coreset is a weighted subset of the data, which guarantees that models fitting the coreset also provide a good fit for the original data set. We show that, perhaps surprisingly, Gaussian mixtures admit coresets of size polynomial in dimension and the number of mixture components, while being independent of the data set size. Hence, one can harness computationally intensive algorithms to compute a good approximation on a significantly smaller data set. More importantly, such coresets can be efficiently constructed both in distributed and streaming settings and do not impose restrictions on the data generating process. Our results rely on a novel reduction of statistical estimation to problems in computational geometry and new combinatorial complexity results for mixtures of Gaussians. Empirical evaluation on several real-world datasets suggests that our coreset-based approach enables significant reduction in training-time with negligible approximation error.


Scalable Training of Mixture Models via Coresets

Neural Information Processing Systems

How can we train a statistical mixture model on a massive data set? In this paper, we show how to construct coresets for mixtures of Gaussians and natural generalizations. A coreset is a weighted subset of the data, which guarantees that models fitting the coreset will also provide a good fit for the original data set. We show that, perhaps surprisingly, Gaussian mixtures admit coresets of size independent of the size of the data set. More precisely, we prove that a weighted set of $O(dk^3/\eps^2)$ data points suffices for computing a $(1+\eps)$-approximation for the optimal model on the original $n$ data points. Moreover, such coresets can be efficiently constructed in a map-reduce style computation, as well as in a streaming setting. Our results rely on a novel reduction of statistical estimation to problems in computational geometry, as well as new complexity results about mixtures of Gaussians. We empirically evaluate our algorithms on several real data sets, including a density estimation problem in the context of earthquake detection using accelerometers in mobile phones.