Etzioni, Oren


Moving Beyond the Turing Test with the Allen AI Science Challenge

arXiv.org Artificial Intelligence

Given recent successes in AI (e.g., AlphaGo's victory against Lee Sedol in the game of GO), it's become increasingly important to assess: how close are AI systems to human-level intelligence? This paper describes the Allen AI Science Challenge---an approach towards that goal which led to a unique Kaggle Competition, its results, the lessons learned, and our next steps.


My Computer Is an Honor Student -- but How Intelligent Is It? Standardized Tests as a Measure of AI

AI Magazine

Given the well-known limitations of the Turing Test, there is a need for objective tests to both focus attention on, and measure progress towards, the goals of AI. In this paper we argue that machine performance on standardized tests should be a key component of any new measure of AI, because attaining a high level of performance requires solving significant AI problems involving language understanding and world modeling - critical skills for any machine that lays claim to intelligence. In addition, standardized tests have all the basic requirements of a practical test: they are accessible, easily comprehensible, clearly measurable, and offer a graduated progression from simple tasks to those requiring deep understanding of the world.


My Computer Is an Honor Student -- but How Intelligent Is It? Standardized Tests as a Measure of AI

AI Magazine

Given the well-known limitations of the Turing Test, there is a need for objective tests to both focus attention on, and measure progress towards, the goals of AI. In this paper we argue that machine performance on standardized tests should be a key component of any new measure of AI, because attaining a high level of performance requires solving significant AI problems involving language understanding and world modeling - critical skills for any machine that lays claim to intelligence. In addition, standardized tests have all the basic requirements of a practical test: they are accessible, easily comprehensible, clearly measurable, and offer a graduated progression from simple tasks to those requiring deep understanding of the world. Here we propose this task as a challenge problem for the community, summarize our state-of-the-art results on math and science tests, and provide supporting datasets


Adapting Open Information Extraction to Domain-Specific Relations

AI Magazine

Information extraction (IE) can identify a set of relations from free text to support question answering (QA). Until recently, IE systems were domain-specific and needed a combination of manual engineering and supervised learning to adapt to each target domain. A new paradigm, Open IE operates on large text corpora without any manual tagging of relations, and indeed without any pre-specified relations. We explore the steps needed to adapt Open IE to a domain-specific ontology and demonstrate our approach of mapping domain-independent tuples to an ontology using domains from DARPA's Machine Reading Project.


Adapting Open Information Extraction to Domain-Specific Relations

AI Magazine

Information extraction (IE) can identify a set of relations from free text to support question answering (QA). Until recently, IE systems were domain-specific and needed a combination of manual engineering and supervised learning to adapt to each target domain. A new paradigm, Open IE operates on large text corpora without any manual tagging of relations, and indeed without any pre-specified relations. Due to its open-domain and open-relation nature, Open IE is purely textual and is unable to relate the surface forms to an ontology, if known in advance. We explore the steps needed to adapt Open IE to a domain-specific ontology and demonstrate our approach of mapping domain-independent tuples to an ontology using domains from DARPA’s Machine Reading Project. Our system achieves precision over 0.90 from as few as 8 training examples for an NFL-scoring domain.


AAAI 2007 Spring Symposium Series Reports

AI Magazine

The 2007 Spring Symposium Series was held Monday through Wednesday, March 26-28, 2007, at Stanford University, California. The titles of the nine symposia in this symposium series were (1) Control Mechanisms for Spatial Knowledge Processing in Cognitive/Intelligent Systems, (2) Game Theoretic and Decision Theoretic Agents, (3) Intentions in Intelligent Systems, (4) Interaction Challenges for Artificial Assistants, (5) Logical Formalizations of Commonsense Reasoning, (6) Machine Reading, (7) Multidisciplinary Collaboration for Socially Assistive Robotics, (8) Quantum Interaction, and (9) Robots and Robot Venues: Resources for AI Education.


AAAI 2007 Spring Symposium Series Reports

AI Magazine

The 2007 Spring Symposium Series was held Monday through Wednesday, March 26-28, 2007, at Stanford University, California. The titles of the nine symposia in this symposium series were (1) Control Mechanisms for Spatial Knowledge Processing in Cognitive/Intelligent Systems, (2) Game Theoretic and Decision Theoretic Agents, (3) Intentions in Intelligent Systems, (4) Interaction Challenges for Artificial Assistants, (5) Logical Formalizations of Commonsense Reasoning, (6) Machine Reading, (7) Multidisciplinary Collaboration for Socially Assistive Robotics, (8) Quantum Interaction, and (9) Robots and Robot Venues: Resources for AI Education.




Moving Up the Information Food Chain: Deploying Softbots on the World Wide Web

AI Magazine

I view the World Wide Web as an information food chain. The maze of pages and hyperlinks that comprise the Web are at the very bottom of the chain. The WEBCRAWLERs and ALTAVISTAs of the world are information herbivores; they graze on Web pages and regurgitate them as searchable indices. Today, most Web users feed near the bottom of the information food chain, but the time is ripe to move up. Since 1991, we have been building information carnivores, which intelligently hunt and feast on herbivores in UNIX, on the Internet, and on the Web. Information carnivores will become increasingly critical as the Web continues to grow and as more naive users are exposed to its chaotic jumble.