Eaton, Eric


Lifelong Learning Networks: Beyond Single Agent Lifelong Learning

AAAI Conferences

Lifelong machine learning (LML) is a paradigm to design adaptive agents that can learn in dynamic environments. Current LML algorithms consider a single agent that has centralized access to all data. However, given privacy and security constraints, data might be distributed among multiple agents that can collaborate and learn from collective experience. Our goal is to extend LML from a single agent to a network of multiple agents that collectively learn a series of tasks.


Tree-Structured Boosting: Connections Between Gradient Boosted Stumps and Full Decision Trees

arXiv.org Machine Learning

Additive models, such as produced by gradient boosting, and full interaction models, such as classification and regression trees (CART), are widely used algorithms that have been investigated largely in isolation. We show that these models exist along a spectrum, revealing never-before-known connections between these two approaches. This paper introduces a novel technique called tree-structured boosting for creating a single decision tree, and shows that this method can produce models equivalent to CART or gradient boosted stumps at the extremes by varying a single parameter. Although tree-structured boosting is designed primarily to provide both the model interpretability and predictive performance needed for high-stake applications like medicine, it also can produce decision trees represented by hybrid models between CART and boosted stumps that can outperform either of these approaches.


Using Task Descriptions in Lifelong Machine Learning for Improved Performance and Zero-Shot Transfer

arXiv.org Machine Learning

Knowledge transfer between tasks can improve the performance of learned models, but requires an accurate estimate of the inter-task relationships to identify the relevant knowledge to transfer. These inter-task relationships are typically estimated based on training data for each task, which is inefficient in lifelong learning settings where the goal is to learn each consecutive task rapidly from as little data as possible. To reduce this burden, we develop a lifelong learning method based on coupled dictionary learning that utilizes high-level task descriptions to model the inter-task relationships. We show that using task descriptors improves the performance of the learned task policies, providing both theoretical justification for the benefit and empirical demonstration of the improvement across a variety of learning problems. Given only the descriptor for a new task, the lifelong learner is also able to accurately predict a model for the new task through zero-shot learning using the coupled dictionary, eliminating the need to gather training data before addressing the task.



Estimating 3D Trajectories from 2D Projections via Disjunctive Factored Four-Way Conditional Restricted Boltzmann Machines

arXiv.org Artificial Intelligence

Estimation, recognition, and near-future prediction of 3D trajectories based on their two dimensional projections available from one camera source is an exceptionally difficult problem due to uncertainty in the trajectories and environment, high dimensionality of the specific trajectory states, lack of enough labeled data and so on. In this article, we propose a solution to solve this problem based on a novel deep learning model dubbed Disjunctive Factored Four-Way Conditional Restricted Boltzmann Machine (DFFW-CRBM). Our method improves state-of-the-art deep learning techniques for high dimensional time-series modeling by introducing a novel tensor factorization capable of driving forth order Boltzmann machines to considerably lower energy levels, at no computational costs. DFFW-CRBMs are capable of accurately estimating, recognizing, and performing near-future prediction of three-dimensional trajectories from their 2D projections while requiring limited amount of labeled data. We evaluate our method on both simulated and real-world data, showing its effectiveness in predicting and classifying complex ball trajectories and human activities.


Reports on the 2015 AAAI Workshop Program

AI Magazine

AAAI's 2015 Workshop Program was held Sunday and Monday, January 25–26, 2015 at the Hyatt Regency Austin Hotel in Austion, Texas, USA. The AAAI-15 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. Most workshops were held on a single day. The titles of the workshops included AI and Ethics, AI for Cities, AI for Transportation: Advice, Interactivity and Actor Modeling, Algorithm Configuration, Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Beyond the Turing Test, Computational Sustainability, Computer Poker and Imperfect Information, Incentive and Trust in E-Communities, Multiagent Interaction without Prior Coordination, Planning, Search, and Optimization, Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Trajectory-Based Behaviour Analytics, World Wide Web and Public Health Intelligence, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, and Learning for General Competency in Video Games.


Reports on the 2015 AAAI Workshop Program

AI Magazine

AAAI's 2015 Workshop Program was held Sunday and Monday, January 25–26, 2015 at the Hyatt Regency Austin Hotel in Austion, Texas, USA. The AAAI-15 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. Most workshops were held on a single day. The titles of the workshops included AI and Ethics, AI for Cities, AI for Transportation: Advice, Interactivity and Actor Modeling, Algorithm Configuration, Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Beyond the Turing Test, Computational Sustainability, Computer Poker and Imperfect Information, Incentive and Trust in E-Communities, Multiagent Interaction without Prior Coordination, Planning, Search, and Optimization, Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Trajectory-Based Behaviour Analytics, World Wide Web and Public Health Intelligence, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, and Learning for General Competency in Video Games.


Unsupervised Cross-Domain Transfer in Policy Gradient Reinforcement Learning via Manifold Alignment

AAAI Conferences

The success of applying policy gradient reinforcement learning (RL) to difficult control tasks hinges crucially on the ability to determine a sensible initialization for the policy. Transfer learning methods tackle this problem by reusing knowledge gleaned from solving other related tasks. In the case of multiple task domains, these algorithms require an inter-task mapping to facilitate knowledge transfer across domains. However, there are currently no general methods to learn an inter-task mapping without requiring either background knowledge that is not typically present in RL settings, or an expensive analysis of an exponential number of inter-task mappings in the size of the state and action spaces. This paper introduces an autonomous framework that uses unsupervised manifold alignment to learn inter-task mappings and effectively transfer samples between different task domains. Empirical results on diverse dynamical systems, including an application to quadrotor control, demonstrate its effectiveness for cross-domain transfer in the context of policy gradient RL.


Computational Sustainability: Editorial Introduction to the Summer and Fall Issues

AI Magazine

Computational sustainability problems, which exist in dynamic environments with high amounts of uncertainty, provide a variety of unique challenges to artificial intelligence research and the opportunity for significant impact upon our collective future. This editorial introduction provides an overview of artificial intelligence for computational sustainability, and introduces the special issue articles that appear in this issue and the previous issue of AI Magazine.


Computational Sustainability: Editorial Introduction to the Summer and Fall Issues

AI Magazine

Computational sustainability problems, which exist in dynamic environments with high amounts of uncertainty, provide a variety of unique challenges to artificial intelligence research and the opportunity for significant impact upon our collective future. This editorial introduction provides an overview of artificial intelligence for computational sustainability, and introduces the special issue articles that appear in this issue and the previous issue of AI Magazine.