Cox, Michael T.


Rationale-Based Visual Planning Monitors for Cognitive Systems

AAAI Conferences

In this paper, we introduce a new technique for planning in a world under continuous change. We focus on the relationship between vision, interpretation and planning. Our approach is to make vision sensitive to relevant changes in the environment that can affect plans and goals. For this purpose, we applied a rationale-based monitor technique to a hierarchical planner. The planner generates plan monitors that interact with a vision system and react only to those environmental changes that bear on current planning decisions. Thus when the monitors detect these changes, they execute specific plan transformations as needed. We present results with a cognitive architecture using the monitors to focus vision and adapt plans. An experiment in a blocks world demonstrates the effectiveness of our approach.


AAAI 2008 Workshop Reports

AI Magazine

AAAI 2008 Workshop Reports


AAAI 2008 Workshop Reports

AI Magazine

AAAI was pleased to present the AAAI-08 Workshop Program, held Sunday and Monday, July 13–14, in Chicago, Illinois, USA. The program included the following 15 workshops: Advancements in POMDP Solvers; AI Education Workshop Colloquium; Coordination, Organizations, Institutions, and Norms in Agent Systems, Enhanced Messaging; Human Implications of Human-Robot Interaction; Intelligent Techniques for Web Personalization and Recommender Systems; Metareasoning: Thinking about Thinking; Multidisciplinary Workshop on Advances in Preference Handling; Search in Artificial Intelligence and Robotics; Spatial and Temporal Reasoning; Trading Agent Design and Analysis; Transfer Learning for Complex Tasks; What Went Wrong and Why: Lessons from AI Research and Applications; and Wikipedia and Artificial Intelligence: An Evolving Synergy.


Mixed-Initiative Goal Manipulation

AI Magazine

In state-space planning, search consists of backward and forward chaining through the effects and preconditions of operator representations. Although search is an acceptable mechanism to use in performing automated planning, we present an alternative model to present to the user at the interface of a mixed-initiative planning assistant. That is, we propose to model planning as a goal-manipulation task. This article empirically examines user performance under both the search and the goal-manipulation models of planning and shows that many users do better with the latter.


Seven Aspects of Mixed-Initiative Reasoning:An Introduction to this Special Issue on Mixed-Initiative Assistants

AI Magazine

Mixed-initiative assistants are agents that interact seamlessly with humans to extend their problem-solving capabilities or provide new capabilities. Developing such agents requires the synergistic integration of many areas of AI, including knowledge representation, problem solving and planning, knowledge acquisition and learning, multiagent systems, discourse theory, and human-computer interaction. This paper introduces seven aspects of mixed-initiative reasoning (task, control, awareness, communication, personalization, architecture, and evaluation) and discusses them in the context of several state-of-the-art mixed-initiative assistants. The goal is to provide a framework for understanding and comparing existing mixed-initiative assistants and for developing general design principles and methods.


Mixed-Initiative Goal Manipulation

AI Magazine

Mixed-initiative planning systems attempt to integrate human and AI planners so that the synthesis results in high-quality plans. In the AI community, the dominant model of planning is search. In state-space planning, search consists of backward and forward chaining through the effects and preconditions of operator representations. Although search is an acceptable mechanism to use in performing automated planning, we present an alternative model to present to the user at the interface of a mixed-initiative planning assistant. That is, we propose to model planning as a goal-manipulation task. Here planning involves moving goals through a hyperspace in order to reach equilibrium between available resources and the constraints of a dynamic environment. The users can establish and "steer" goals through a visual representation of the planning domain. They can associate resources with particular goals and shift goals along various dimensions in response to changing conditions as well as change the structure of previous plans. Users need not know the details of the underlying technology, even when search is used within. This article empirically examines user performance under both the search and the goal-manipulation models of planning and shows that many users do better with the latter.


Seven Aspects of Mixed-Initiative Reasoning:An Introduction to this Special Issue on Mixed-Initiative Assistants

AI Magazine

Mixed-initiative assistants are agents that interact seamlessly with humans to extend their problem-solving capabilities or provide new capabilities. Developing such agents requires the synergistic integration of many areas of AI, including knowledge representation, problem solving and planning, knowledge acquisition and learning, multiagent systems, discourse theory, and human-computer interaction. This paper introduces seven aspects of mixed-initiative reasoning (task, control, awareness, communication, personalization, architecture, and evaluation) and discusses them in the context of several state-of-the-art mixed-initiative assistants. The goal is to provide a framework for understanding and comparing existing mixed-initiative assistants and for developing general design principles and methods.


Perpetual Self-Aware Cognitive Agents

AI Magazine

To construct a perpetual self-aware cognitive agent that can continuously operate with independence, an introspective machine must be produced. To assemble such an agent, it is necessary to perform a full integration of cognition (planning, understanding, and learning) and metacognition (control and monitoring of cognition) with intelligent behaviors. I outline some key computational requirements of metacognition by describing a multi- strategy learning system called Meta-AQUA and then discuss an integration of Meta-AQUA with a nonlinear state-space planning agent. I show how the resultant system, INTRO, can independently generate its own goals, and I relate this work to the general issue of self-awareness by machine.


Perpetual Self-Aware Cognitive Agents

AI Magazine

To construct a perpetual self-aware cognitive agent that can continuously operate with independence, an introspective machine must be produced. To assemble such an agent, it is necessary to perform a full integration of cognition (planning, understanding, and learning) and metacognition (control and monitoring of cognition) with intelligent behaviors. The failure to do this completely is why similar, more limited efforts have not succeeded in the past. I outline some key computational requirements of metacognition by describing a multi- strategy learning system called Meta-AQUA and then discuss an integration of Meta-AQUA with a nonlinear state-space planning agent. I show how the resultant system, INTRO, can independently generate its own goals, and I relate this work to the general issue of self-awareness by machine.