Cox, Michael T.


AAAI 2008 Workshop Reports

AI Magazine

AAAI 2008 Workshop Reports


Mixed-Initiative Goal Manipulation

AI Magazine

In state-space planning, search consists of backward and forward chaining through the effects and preconditions of operator representations. Although search is an acceptable mechanism to use in performing automated planning, we present an alternative model to present to the user at the interface of a mixed-initiative planning assistant. That is, we propose to model planning as a goal-manipulation task. This article empirically examines user performance under both the search and the goal-manipulation models of planning and shows that many users do better with the latter.


Seven Aspects of Mixed-Initiative Reasoning:An Introduction to this Special Issue on Mixed-Initiative Assistants

AI Magazine

Mixed-initiative assistants are agents that interact seamlessly with humans to extend their problem-solving capabilities or provide new capabilities. Developing such agents requires the synergistic integration of many areas of AI, including knowledge representation, problem solving and planning, knowledge acquisition and learning, multiagent systems, discourse theory, and human-computer interaction. This paper introduces seven aspects of mixed-initiative reasoning (task, control, awareness, communication, personalization, architecture, and evaluation) and discusses them in the context of several state-of-the-art mixed-initiative assistants. The goal is to provide a framework for understanding and comparing existing mixed-initiative assistants and for developing general design principles and methods.


Perpetual Self-Aware Cognitive Agents

AI Magazine

To construct a perpetual self-aware cognitive agent that can continuously operate with independence, an introspective machine must be produced. To assemble such an agent, it is necessary to perform a full integration of cognition (planning, understanding, and learning) and metacognition (control and monitoring of cognition) with intelligent behaviors. I outline some key computational requirements of metacognition by describing a multi- strategy learning system called Meta-AQUA and then discuss an integration of Meta-AQUA with a nonlinear state-space planning agent. I show how the resultant system, INTRO, can independently generate its own goals, and I relate this work to the general issue of self-awareness by machine.