Chernova, Sonia


Semi-Supervised Haptic Material Recognition for Robots using Generative Adversarial Networks

arXiv.org Machine Learning

Material recognition enables robots to incorporate knowledge of material properties into their interactions with everyday objects. For example, material recognition opens up opportunities for clearer communication with a robot, such as "bring me the metal coffee mug", and recognizing plastic versus metal is crucial when using a microwave or oven. However, collecting labeled training data with a robot is often more difficult than unlabeled data. We present a semi-supervised learning approach for material recognition that uses generative adversarial networks (GANs) with haptic features such as force, temperature, and vibration. Our approach achieves state-of-the-art results and enables a robot to estimate the material class of household objects with ~90% accuracy when 92% of the training data are unlabeled. We explore how well this approach can recognize the material of new objects and we discuss challenges facing generalization. To motivate learning from unlabeled training data, we also compare results against several common supervised learning classifiers. In addition, we have released the dataset used for this work which consists of time-series haptic measurements from a robot that conducted thousands of interactions with 72 household objects.


Reports on the 2014 AAAI Fall Symposium Series

AI Magazine

The AAAI 2014 Fall Symposium Series was held Thursday through Saturday, November 13–15, at the Westin Arlington Gateway in Arlington, Virginia adjacent to Washington, DC. The titles of the seven symposia were Artificial Intelligence for Human-Robot Interaction, Energy Market Prediction, Expanding the Boundaries of Health Informatics Using AI, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, Modeling Changing Perspectives: Reconceptualizing Sensorimotor Experiences, Natural Language Access to Big Data, and The Nature of Humans and Machines: A Multidisciplinary Discourse. The highlights of each symposium are presented in this report.


Reports on the 2014 AAAI Fall Symposium Series

AI Magazine

The AAAI 2014 Fall Symposium Series was held Thursday through Saturday, November 13–15, at the Westin Arlington Gateway in Arlington, Virginia adjacent to Washington, DC. The titles of the seven symposia were Artificial Intelligence for Human-Robot Interaction, Energy Market Prediction, Expanding the Boundaries of Health Informatics Using AI, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, Modeling Changing Perspectives: Reconceptualizing Sensorimotor Experiences, Natural Language Access to Big Data, and The Nature of Humans and Machines: A Multidisciplinary Discourse. The highlights of each symposium are presented in this report.


Reinforcement Learning from Demonstration through Shaping

AAAI Conferences

Reinforcement learning describes how a learning agent can achieve optimal behaviour based on interactions with its environment and reward feedback. A limiting factor in reinforcement learning as employed in artificial intelligence is the need for an often prohibitively large number of environment samples before the agent reaches a desirable level of performance. Learning from demonstration is an approach that provides the agent with demonstrations by a supposed expert, from which it should derive suitable behaviour. Yet, one of the challenges of learning from demonstration is that no guarantees can be provided for the quality of the demonstrations, and thus the learned behavior. In this paper, we investigate the intersection of these two approaches, leveraging the theoretical guarantees provided by reinforcement learning, and using expert demonstrations to speed up this learning by biasing exploration through a process called reward shaping. This approach allows us to leverage human input without making an erroneous assumption regarding demonstration optimality. We show experimentally that this approach requires significantly fewer demonstrations, is more robust against suboptimality of demonstrations, and achieves much faster learning than the recently developed HAT algorithm.


Interactive Policy Learning through Confidence-Based Autonomy

arXiv.org Artificial Intelligence

We present Confidence-Based Autonomy (CBA), an interactive algorithm for policy learning from demonstration. The CBA algorithm consists of two components which take advantage of the complimentary abilities of humans and computer agents. The first component, Confident Execution, enables the agent to identify states in which demonstration is required, to request a demonstration from the human teacher and to learn a policy based on the acquired data. The algorithm selects demonstrations based on a measure of action selection confidence, and our results show that using Confident Execution the agent requires fewer demonstrations to learn the policy than when demonstrations are selected by a human teacher. The second algorithmic component, Corrective Demonstration, enables the teacher to correct any mistakes made by the agent through additional demonstrations in order to improve the policy and future task performance. CBA and its individual components are compared and evaluated in a complex simulated driving domain. The complete CBA algorithm results in the best overall learning performance, successfully reproducing the behavior of the teacher while balancing the tradeoff between number of demonstrations and number of incorrect actions during learning.


The AAAI 2011 Robot Exhibition

AI Magazine

In this article we report on the exhibits and challenges shown at the AAAI 2011 Robotics Program in San Francisco. The event included a broad demonstration of innovative research at the intersection of robotics and artificial intelligence. Through these multi-year challenge events, our goal has been to focus the research community's energy toward common platforms and common problems to work toward the greater goal of embodied AI.


The AAAI 2011 Robot Exhibition

AI Magazine

In this article we report on the exhibits and challenges shown at the AAAI 2011 Robotics Program in San Francisco. The event included a broad demonstration of innovative research at the intersection of robotics and artificial intelligence. Through these multi-year challenge events, our goal has been to focus the research community’s energy toward common platforms and common problems to work toward the greater goal of embodied AI.


Crowdsourcing Real World Human-Robot Dialog and Teamwork through Online Multiplayer Games

AI Magazine

We present an innovative approach for large-scale data collection in human-robot interaction research through the use of online multi-player games. By casting a robotic task as a collaborative game, we gather thousands of examples of human-human interactions online, and then leverage this corpus of action and dialog data to create contextually relevant, social and task-oriented behaviors for human-robot interaction in the real world. We demonstrate our work in a collaborative search and retrieval task requiring dialog, action synchronization and action sequencing between the human and robot partners. A user study performed at the Boston Museum of Science shows that the autonomous robot exhibits many of the same patterns of behavior that were observed in the online dataset and survey results rate the robot similarly to human partners in several critical measures.


Crowdsourcing Real World Human-Robot Dialog and Teamwork through Online Multiplayer Games

AI Magazine

We present an innovative approach for large-scale data collection in human-robot interaction research through the use of online multi-player games. By casting a robotic task as a collaborative game, we gather thousands of examples of human-human interactions online, and then leverage this corpus of action and dialog data to create contextually relevant, social and task-oriented behaviors for human-robot interaction in the real world. We demonstrate our work in a collaborative search and retrieval task requiring dialog, action synchronization and action sequencing between the human and robot partners. A user study performed at the Boston Museum of Science shows that the autonomous robot exhibits many of the same patterns of behavior that were observed in the online dataset and survey results rate the robot similarly to human partners in several critical measures.


Report on the AAAI 2010 Robot Exhibition

AI Magazine

The 19th robotics program at the annual AAAI conference was held in Atlanta, Georgia in July 2010. In this article we give a summary of three components of the exhibition: small scale manipulation challenge: robotic chess; the learning by demonstration challenge, and the education track. We also describe the participating teams, highlight the research questions they tackled and briefly describe the systems they demonstrated.