Collaborating Authors

Chen, Jiaoyan

Knowledge Graph Reasoning with Logics and Embeddings: Survey and Perspective Artificial Intelligence

Knowledge graph (KG) reasoning is becoming increasingly popular in both academia and industry. Conventional KG reasoning based on symbolic logic is deterministic, with reasoning results being explainable, while modern embedding-based reasoning can deal with uncertainty and predict plausible knowledge, often with high efficiency via vector computation. A promising direction is to integrate both logic-based and embedding-based methods, with the vision to have advantages of both. It has attracted wide research attention with more and more works published in recent years. In this paper, we comprehensively survey these works, focusing on how logics and embeddings are integrated. We first briefly introduce preliminaries, then systematically categorize and discuss works of logic and embedding-aware KG reasoning from different perspectives, and finally conclude and discuss the challenges and further directions.

Low-resource Learning with Knowledge Graphs: A Comprehensive Survey Artificial Intelligence

Machine learning methods especially deep neural networks have achieved great success but many of them often rely on a number of labeled samples for training. In real-world applications, we often need to address sample shortage due to e.g., dynamic contexts with emerging prediction targets and costly sample annotation. Therefore, low-resource learning, which aims to learn robust prediction models with no enough resources (especially training samples), is now being widely investigated. Among all the low-resource learning studies, many prefer to utilize some auxiliary information in the form of Knowledge Graph (KG), which is becoming more and more popular for knowledge representation, to reduce the reliance on labeled samples. In this survey, we very comprehensively reviewed over $90$ papers about KG-aware research for two major low-resource learning settings -- zero-shot learning (ZSL) where new classes for prediction have never appeared in training, and few-shot learning (FSL) where new classes for prediction have only a small number of labeled samples that are available. We first introduced the KGs used in ZSL and FSL studies as well as the existing and potential KG construction solutions, and then systematically categorized and summarized KG-aware ZSL and FSL methods, dividing them into different paradigms such as the mapping-based, the data augmentation, the propagation-based and the optimization-based. We next presented different applications, including not only KG augmented tasks in Computer Vision and Natural Language Processing (e.g., image classification, text classification and knowledge extraction), but also tasks for KG curation (e.g., inductive KG completion), and some typical evaluation resources for each task. We eventually discussed some challenges and future directions on aspects such as new learning and reasoning paradigms, and the construction of high quality KGs.

BERTMap: A BERT-based Ontology Alignment System Artificial Intelligence

Ontology alignment (a.k.a ontology matching (OM)) plays a critical role in knowledge integration. Owing to the success of machine learning in many domains, it has been applied in OM. However, the existing methods, which often adopt ad-hoc feature engineering or non-contextual word embeddings, have not yet outperformed rule-based systems especially in an unsupervised setting. In this paper, we propose a novel OM system named BERTMap which can support both unsupervised and semi-supervised settings. It first predicts mappings using a classifier based on fine-tuning the contextual embedding model BERT on text semantics corpora extracted from ontologies, and then refines the mappings through extension and repair by utilizing the ontology structure and logic. Our evaluation with three alignment tasks on biomedical ontologies demonstrates that BERTMap can often perform better than the leading OM systems LogMap and AML.

Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings Artificial Intelligence

We have created a knowledge graph based on major data sources used in ecotoxicological risk assessment. We have applied this knowledge graph to an important task in risk assessment, namely chemical effect prediction. We have evaluated nine knowledge graph embedding models from a selection of geometric, decomposition, and convolutional models on this prediction task. We show that using knowledge graph embeddings can increase the accuracy of effect prediction with neural networks. Furthermore, we have implemented a fine-tuning architecture which adapts the knowledge graph embeddings to the effect prediction task and leads to a better performance. Finally, we evaluate certain characteristics of the knowledge graph embedding models to shed light on the individual model performance.

Zero-shot Visual Question Answering using Knowledge Graph Artificial Intelligence

Incorporating external knowledge to Visual Question Answering (VQA) has become a vital practical need. Existing methods mostly adopt pipeline approaches with different components for knowledge matching and extraction, feature learning, etc.However, such pipeline approaches suffer when some component does not perform well, which leads to error propagation and poor overall performance. Furthermore, the majority of existing approaches ignore the answer bias issue -- many answers may have never appeared during training (i.e., unseen answers) in real-word application. To bridge these gaps, in this paper, we propose a Zero-shot VQA algorithm using knowledge graphs and a mask-based learning mechanism for better incorporating external knowledge, and present new answer-based Zero-shot VQA splits for the F-VQA dataset. Experiments show that our method can achieve state-of-the-art performance in Zero-shot VQA with unseen answers, meanwhile dramatically augment existing end-to-end models on the normal F-VQA task.

K-ZSL: Resources for Knowledge-driven Zero-shot Learning Artificial Intelligence

External knowledge (a.k.a side information) plays a critical role in zero-shot learning (ZSL) which aims to predict with unseen classes that have never appeared in training data. Several kinds of external knowledge such as text and attribute have been widely investigated, but they alone are limited with incomplete semantics. Therefore, some very recent studies propose to use Knowledge Graph (KG) due to its high expressivity and compatibility for representing kinds of knowledge. However, the ZSL community is still short of standard benchmarks for studying and comparing different KG-based ZSL methods. In this paper, we proposed 5 resources for KG-based research in zero-shot image classification (ZS-IMGC) and zero-shot KG completion (ZS-KGC). For each resource, we contributed a benchmark and its KG with semantics ranging from text to attributes, from relational knowledge to logical expressions. We have clearly presented how the resources are constructed, their statistics and formats, and how they can be utilized with cases in evaluating ZSL methods' performance and explanations. Our resources are available at

PRASEMap: A Probabilistic Reasoning and Semantic Embedding based Knowledge Graph Alignment System Artificial Intelligence

Knowledge Graph (KG) alignment aims at finding equivalent entities and relations (i.e., mappings) between two KGs. The existing approaches utilize either reasoning-based or semantic embedding-based techniques, but few studies explore their combination. In this demonstration, we present PRASEMap, an unsupervised KG alignment system that iteratively computes the Mappings with both Probabilistic Reasoning (PR) And Semantic Embedding (SE) techniques. PRASEMap can support various embedding-based KG alignment approaches as the SE module, and enables easy human computer interaction that additionally provides an option for users to feed the mapping annotations back to the system for better results. The demonstration showcases these features via a stand-alone Web application with user friendly interfaces.

OntoEA: Ontology-guided Entity Alignment via Joint Knowledge Graph Embedding Artificial Intelligence

Semantic embedding has been widely investigated for aligning knowledge graph (KG) entities. Current methods have explored and utilized the graph structure, the entity names and attributes, but ignore the ontology (or ontological schema) which contains critical meta information such as classes and their membership relationships with entities. In this paper, we propose an ontology-guided entity alignment method named OntoEA, where both KGs and their ontologies are jointly embedded, and the class hierarchy and the class disjointness are utilized to avoid false mappings. Extensive experiments on seven public and industrial benchmarks have demonstrated the state-of-the-art performance of OntoEA and the effectiveness of the ontologies.

Unsupervised Knowledge Graph Alignment by Probabilistic Reasoning and Semantic Embedding Artificial Intelligence

Knowledge Graph (KG) alignment is to discover the mappings (i.e., equivalent entities, relations, and others) between two KGs. The existing methods can be divided into the embedding-based models, and the conventional reasoning and lexical matching based systems. The former compute the similarity of entities via their cross-KG embeddings, but they usually rely on an ideal supervised learning setting for good performance and lack appropriate reasoning to avoid logically wrong mappings; while the latter address the reasoning issue but are poor at utilizing the KG graph structures and the entity contexts. In this study, we aim at combining the above two solutions and thus propose an iterative framework named PRASE which is based on probabilistic reasoning and semantic embedding. It learns the KG embeddings via entity mappings from a probabilistic reasoning system named PARIS, and feeds the resultant entity mappings and embeddings back into PARIS for augmentation. The PRASE framework is compatible with different embedding-based models, and our experiments on multiple datasets have demonstrated its state-of-the-art performance.

Knowledge-aware Zero-Shot Learning: Survey and Perspective Artificial Intelligence

Zero-shot learning (ZSL) which aims at predicting classes that have never appeared during the training using external knowledge (a.k.a. side information) has been widely investigated. In this paper we present a literature review towards ZSL in the perspective of external knowledge, where we categorize the external knowledge, review their methods and compare different external knowledge. With the literature review, we further discuss and outlook the role of symbolic knowledge in addressing ZSL and other machine learning sample shortage issues.