Collaborating Authors

Chen, Huan

Improving Conversational Recommendation System by Pretraining on Billions Scale of Knowledge Graph Artificial Intelligence

Conversational Recommender Systems (CRSs) in E-commerce platforms aim to recommend items to users via multiple conversational interactions. Click-through rate (CTR) prediction models are commonly used for ranking candidate items. However, most CRSs are suffer from the problem of data scarcity and sparseness. To address this issue, we propose a novel knowledge-enhanced deep cross network (K-DCN), a two-step (pretrain and fine-tune) CTR prediction model to recommend items. We first construct a billion-scale conversation knowledge graph (CKG) from information about users, items and conversations, and then pretrain CKG by introducing knowledge graph embedding method and graph convolution network to encode semantic and structural information respectively.To make the CTR prediction model sensible of current state of users and the relationship between dialogues and items, we introduce user-state and dialogue-interaction representations based on pre-trained CKG and propose K-DCN.In K-DCN, we fuse the user-state representation, dialogue-interaction representation and other normal feature representations via deep cross network, which will give the rank of candidate items to be recommended.We experimentally prove that our proposal significantly outperforms baselines and show it's real application in Alime.

An Emotion-controlled Dialog Response Generation Model with Dynamic Vocabulary Artificial Intelligence

In response generation task, proper sentimental expressions can obviously improve the human-like level of the responses. However, for real application in online systems, high QPS (queries per second, an indicator of the flow capacity of on-line systems) is required, and a dynamic vocabulary mechanism has been proved available in improving speed of generative models. In this paper, we proposed an emotion-controlled dialog response generation model based on the dynamic vocabulary mechanism, and the experimental results show the benefit of this model.

MLR: A Two-stage Conversational Query Rewriting Model with Multi-task Learning Artificial Intelligence

Conversational context understanding aims to recognize the real intention of user from the conversation history, which is critical for building the dialogue system. However, the multi-turn conversation understanding in open domain is still quite challenging, which requires the system extracting the important information and resolving the dependencies in contexts among a variety of open topics. In this paper, we propose the conversational query rewriting model - MLR, which is a Multi-task model on sequence Labeling and query Rewriting. MLR reformulates the multi-turn conversational queries into a single turn query, which conveys the true intention of users concisely and alleviates the difficulty of the multi-turn dialogue modeling. In the model, we formulate the query rewriting as a sequence generation problem and introduce word category information via the auxiliary word category label predicting task. To train our model, we construct a new Chinese query rewriting dataset and conduct experiments on it. The experimental results show that our model outperforms compared models, and prove the effectiveness of the word category information in improving the rewriting performance.