Brownstein, John S.


Reports of the Workshops of the Thirty-First AAAI Conference on Artificial Intelligence

AI Magazine

Reports of the Workshops of the Thirty-First AAAI Conference on Artificial Intelligence


Reports of the 2016 AAAI Workshop Program

AI Magazine

The Workshop Program of the Association for the Advancement of Artificial Intelligence's Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) was held at the beginning of the conference, February 12-13, 2016. Workshop participants met and discussed issues with a selected focus -- providing an informal setting for active exchange among researchers, developers and users on topics of current interest. To foster interaction and exchange of ideas, the workshops were kept small, with 25-65 participants. Attendance was sometimes limited to active participants only, but most workshops also allowed general registration by other interested individuals.


Reports of the 2016 AAAI Workshop Program

AI Magazine

The Workshop Program of the Association for the Advancement of Artificial Intelligence’s Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) was held at the beginning of the conference, February 12-13, 2016. Workshop participants met and discussed issues with a selected focus — providing an informal setting for active exchange among researchers, developers and users on topics of current interest. To foster interaction and exchange of ideas, the workshops were kept small, with 25-65 participants. Attendance was sometimes limited to active participants only, but most workshops also allowed general registration by other interested individuals. The AAAI-16 Workshops were an excellent forum for exploring emerging approaches and task areas, for bridging the gaps between AI and other fields or between subfields of AI, for elucidating the results of exploratory research, or for critiquing existing approaches. The fifteen workshops held at AAAI-16 were Artificial Intelligence Applied to Assistive Technologies and Smart Environments (WS-16-01), AI, Ethics, and Society (WS-16-02), Artificial Intelligence for Cyber Security (WS-16-03), Artificial Intelligence for Smart Grids and Smart Buildings (WS-16-04), Beyond NP (WS-16-05), Computer Poker and Imperfect Information Games (WS-16-06), Declarative Learning Based Programming (WS-16-07), Expanding the Boundaries of Health Informatics Using AI (WS-16-08), Incentives and Trust in Electronic Communities (WS-16-09), Knowledge Extraction from Text (WS-16-10), Multiagent Interaction without Prior Coordination (WS-16-11), Planning for Hybrid Systems (WS-16-12), Scholarly Big Data: AI Perspectives, Challenges, and Ideas (WS-16-13), Symbiotic Cognitive Systems (WS-16-14), and World Wide Web and Population Health Intelligence (WS-16-15).


Characterizing Diseases from Unstructured Text: A Vocabulary Driven Word2vec Approach

arXiv.org Machine Learning

Traditional disease surveillance can be augmented with a wide variety of real-time sources such as, news and social media. However, these sources are in general unstructured and, construction of surveillance tools such as taxonomical correlations and trace mapping involves considerable human supervision. In this paper, we motivate a disease vocabulary driven word2vec model (Dis2Vec) to model diseases and constituent attributes as word embeddings from the HealthMap news corpus. We use these word embeddings to automatically create disease taxonomies and evaluate our model against corresponding human annotated taxonomies. We compare our model accuracies against several state-of-the art word2vec methods. Our results demonstrate that Dis2Vec outperforms traditional distributed vector representations in its ability to faithfully capture taxonomical attributes across different class of diseases such as endemic, emerging and rare.


Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks

arXiv.org Machine Learning

In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include, applicability to a wide range of diseases, and ability to capture disease dynamics - including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China and India. We noted that temporal topic trends extracted from disease-related news reports successfully captured the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.


Preface

AAAI Conferences

This workshop aims to bring together a wide range of computer scientists, biomedical and health informaticians, researchers, students, industry professionals, national and international public health agencies, and NGOs interested in the theory and practice of computational models of web-based public health intelligence to highlight the latest achievements in epidemiological surveillance based on monitoring online communications and interactions on the World Wide Web. The workshop includes contributions on theory, methods, systems, and applications of data mining, machine learning, databases, natural language processing, knowledge representation, artificial intelligence, semantic web, and big data analytics in web-based health-care applications, with focus on public health.