Boularias, Abdeslam


Bootstrapping Apprenticeship Learning

Neural Information Processing Systems

We consider the problem of apprenticeship learning where the examples, demonstrated by an expert, cover only a small part of a large state space. Inverse Reinforcement Learning (IRL) provides an efficient tool for generalizing the demonstration, based on the assumption that the expert is maximizing a utility function that is a linear combination of state-action features. Most IRL algorithms use a simple Monte Carlo estimation to approximate the expected feature counts under the expert's policy. In this paper, we show that the quality of the learned policies is highly sensitive to the error in estimating the feature counts. To reduce this error, we introduce a novel approach for bootstrapping the demonstration by assuming that: (i), the expert is (near-)optimal, and (ii), the dynamics of the system is known.


Algorithms for Learning Markov Field Policies

Neural Information Processing Systems

We present a new graph-based approach for incorporating domain knowledge in reinforcement learning applications. The domain knowledge is given as a weighted graph, or a kernel matrix, that loosely indicates which states should have similar optimal actions. We first introduce a bias into the policy search process by deriving a distribution on policies such that policies that disagree with the provided graph have low probabilities. We then present a reinforcement and an apprenticeship learning algorithms for finding such policy distributions. We also illustrate the advantage of the proposed approach on three problems: swing-up cart-balancing with nonuniform and smooth frictions, gridworlds, and teaching a robot to grasp new objects.


Task-Relevant Object Discovery and Categorization for Playing First-person Shooter Games

arXiv.org Machine Learning

We consider the problem of learning to play first-person shooter (FPS) video games using raw screen images as observations and keyboard inputs as actions. The high-dimensionality of the observations in this type of applications leads to prohibitive needs of training data for model-free methods, such as the deep Q-network (DQN), and its recurrent variant DRQN. Thus, recent works focused on learning low-dimensional representations that may reduce the need for data. This paper presents a new and efficient method for learning such representations. Salient segments of consecutive frames are detected from their optical flow, and clustered based on their feature descriptors. The clusters typically correspond to different discovered categories of objects. Segments detected in new frames are then classified based on their nearest clusters. Because only a few categories are relevant to a given task, the importance of a category is defined as the correlation between its occurrence and the agent's performance. The result is encoded as a vector indicating objects that are in the frame and their locations, and used as a side input to DRQN. Experiments on the game Doom provide a good evidence for the benefit of this approach.


Fast Model Identification via Physics Engines for Data-Efficient Policy Search

arXiv.org Artificial Intelligence

This paper presents a method for identifying mechanical parameters of robots or objects, such as their mass and friction coefficients. Key features are the use of off-the-shelf physics engines and the adaptation of a Bayesian optimization technique towards minimizing the number of real-world experiments needed for model-based reinforcement learning. The proposed framework reproduces in a physics engine experiments performed on a real robot and optimizes the model's mechanical parameters so as to match real-world trajectories. The optimized model is then used for learning a policy in simulation, before real-world deployment. It is well understood, however, that it is hard to exactly reproduce real trajectories in simulation. Moreover, a near-optimal policy can be frequently found with an imperfect model. Therefore, this work proposes a strategy for identifying a model that is just good enough to approximate the value of a locally optimal policy with a certain confidence, instead of wasting effort on identifying the most accurate model. Evaluations, performed both in simulation and on a real robotic manipulation task, indicate that the proposed strategy results in an overall time-efficient, integrated model identification and learning solution, which significantly improves the data-efficiency of existing policy search algorithms.


Efficient Model Identification for Tensegrity Locomotion

arXiv.org Artificial Intelligence

This paper aims to identify in a practical manner unknown physical parameters, such as mechanical models of actuated robot links, which are critical in dynamical robotic tasks. Key features include the use of an off-the-shelf physics engine and the Bayesian optimization framework. The task being considered is locomotion with a high-dimensional, compliant Tensegrity robot. A key insight, in this case, is the need to project the model identification challenge into an appropriate lower dimensional space for efficiency. Comparisons with alternatives indicate that the proposed method can identify the parameters more accurately within the given time budget, which also results in more precise locomotion control.


Information-Efficient Model Identification for Tensegrity Robot Locomotion

AAAI Conferences

This paper aims to identify in a practical manner unknown physicalparameters, such as mechanical models of actuated robot links, which are critical in dynamical robotictasks. Key features include the use of an off-the-shelf physics engineand the data-efficient adaptation of a black-box Bayesian optimizationframework. The task being considered is locomotion with a high-dimensional, compliant Tensegrity robot. A key insight in this case is the need to project the system identification challenge into an appropriate lower dimensionalspace. Comparisons with alternatives indicate that the proposed method can identify the parameters more accurately within the given time budget, which also results in more precise locomotion control.


Toward Mobile Robots Reasoning Like Humans

AAAI Conferences

Robots are increasingly becoming key players in human-robot teams. To become effective teammates, robots must possess profound understanding of an environment, be able to reason about the desired commands and goals within a specific context, and be able to communicate with human teammates in a clear and natural way. To address these challenges, we have developed an intelligence architecture that combines cognitive components to carry out high-level cognitive tasks, semantic perception to label regions in the world, and a natural language component to reason about the command and its relationship to the objects in the world. This paper describes recent developments using this architecture on a fielded mobile robot platform operating in unknown urban environments. We report a summary of extensive outdoor experiments; the results suggest that a multidisciplinary approach to robotics has the potential to create competent human-robot teams.


Learning to Manipulate Unknown Objects in Clutter by Reinforcement

AAAI Conferences

We present a fully autonomous robotic system for grasping objects in dense clutter. The objects are unknown and have arbitrary shapes. Therefore, we cannot rely on prior models. Instead, the robot learns online, from scratch, to manipulate the objects by trial and error. Grasping objects in clutter is significantly harder than grasping isolated objects, because the robot needs to push and move objects around in order to create sufficient space for the fingers. These pre-grasping actions do not have an immediate utility, and may result in unnecessary delays. The utility of a pre-grasping action can be measured only by looking at the complete chain of consecutive actions and effects. This is a sequential decision-making problem that can be cast in the reinforcement learning framework. We solve this problem by learning the stochastic transitions between the observed states, using nonparametric density estimation. The learned transition function is used only for re-calculating the values of the executed actions in the observed states, with different policies. Values of new state-actions are obtained by regressing the values of the executed actions. The state of the system at a given time is a depth (3D) image of the scene. We use spectral clustering for detecting the different objects in the image. The performance of our system is assessed on a robot with real-world objects.


Oh

AAAI Conferences

Robots are increasingly becoming key players in human-robot teams. To become effective teammates, robots must possess profound understanding of an environment, be able to reason about the desired commands and goals within a specific context, and be able to communicate with human teammates in a clear and natural way. To address these challenges, we have developed an intelligence architecture that combines cognitive components to carry out high-level cognitive tasks, semantic perception to label regions in the world, and a natural language component to reason about the command and its relationship to the objects in the world. This paper describes recent developments using this architecture on a fielded mobile robot platform operating in unknown urban environments. We report a summary of extensive outdoor experiments; the results suggest that a multidisciplinary approach to robotics has the potential to create competent human-robot teams.


Boularias

AAAI Conferences

We present a fully autonomous robotic system for grasping objects in dense clutter. The objects are unknown and have arbitrary shapes. Therefore, we cannot rely on prior models. Instead, the robot learns online, from scratch, to manipulate the objects by trial and error. Grasping objects in clutter is significantly harder than grasping isolated objects, because the robot needs to push and move objects around in order to create sufficient space for the fingers.