Collaborating Authors

Beaver, Ian

Experimental Comparison of Online Anomaly Detection Algorithms

AAAI Conferences

Anomaly detection methods abound and are used extensively in streaming settings in a wide variety of domains. But a strength can also be a weakness; given the vast number of methods, how can one select the best method for their application? Unfortunately, there is no one best way for all domains. Existing literature is focused on creating new anomaly detection methods or creating large frameworks for experimenting with multiple methods at the same time. As the literature continues to grow, extensive evaluation of every available anomaly detection method is not feasible. To reduce this evaluation burden, in this paper we present a framework to intelligently choose the optimal anomaly detection methods based on the characteristics the time series displays. We provide a comprehensive experimental validation of multiple anomaly detection methods over different time series characteristics to form guidelines. Applying our framework can save time and effort by surfacing the most promising anomaly detection methods instead of experimenting extensively with a rapidly expanding library of anomaly detection methods.

Paying Attention to Attention: Highlighting Influential Samples in Sequential Analysis Machine Learning

In (Yang et al. 2016), a hierarchical attention network (HAN) is created for document classification. The attention layer can be used to visualize text influential in classifying the document, thereby explaining the model's prediction. We successfully applied HAN to a sequential analysis task in the form of real-time monitoring of turn taking in conversations. However, we discovered instances where the attention weights were uniform at the stopping point (indicating all turns were equivalently influential to the classifier), preventing meaningful visualization for real-time human review or classifier improvement. We observed that attention weights for turns fluctuated as the conversations progressed, indicating turns had varying influence based on conversation state. Leveraging this observation, we develop a method to create more informative real-time visuals (as confirmed by human reviewers) in cases of uniform attention weights using the changes in turn importance as a conversation progresses over time.