health & medicine


A systematic approach to extracting semantic information from functional MRI data

Neural Information Processing Systems

This paper introduces a novel classification method for functional magnetic resonance imaging datasets with tens of classes. The method is designed to make predictions using information from as many brain locations as possible, instead of resorting to feature selection, and does this by decomposing the pattern of brain activation into differently informative sub-regions. We provide results over a complex semantic processing dataset that show that the method is competitive with state-of-the-art feature selection and also suggest how the method may be used to perform group or exploratory analyses of complex class structure. Papers published at the Neural Information Processing Systems Conference.


Generalizing from Several Related Classification Tasks to a New Unlabeled Sample

Neural Information Processing Systems

We consider the problem of assigning class labels to an unlabeled test data set, given several labeled training data sets drawn from similar distributions. This problem arises in several applications where data distributions fluctuate because of biological, technical, or other sources of variation. We develop a distribution-free, kernel-based approach to the problem. This approach involves identifying an appropriate reproducing kernel Hilbert space and optimizing a regularized empirical risk over the space. We present generalization error analysis, describe universal kernels, and establish universal consistency of the proposed methodology.


Code-specific policy gradient rules for spiking neurons

Neural Information Processing Systems

Although it is widely believed that reinforcement learning is a suitable tool for describing behavioral learning, the mechanisms by which it can be implemented in networks of spiking neurons are not fully understood. Here, we show that different learning rules emerge from a policy gradient approach depending on which features of the spike trains are assumed to influence the reward signals, i.e., depending on which neural code is in effect. We use the framework of Williams (1992) to derive learning rules for arbitrary neural codes. For illustration, we present policy-gradient rules for three different example codes - a spike count code, a spike timing code and the most general full spike train code - and test them on simple model problems. In addition to classical synaptic learning, we derive learning rules for intrinsic parameters that control the excitability of the neuron.


Learning to Use Working Memory in Partially Observable Environments through Dopaminergic Reinforcement

Neural Information Processing Systems

Working memory is a central topic of cognitive neuroscience because it is critical for solving real world problems in which information from multiple temporally distant sources must be combined to generate appropriate behavior. However, an often neglected fact is that learning to use working memory effectively is itself a difficult problem. The Gating" framework is a collection of psychological models that show how dopamine can train the basal ganglia and prefrontal cortex to form useful working memory representations in certain types of problems. We bring together gating with ideas from machine learning about using finite memory systems in more general problems. Thus we present a normative Gating model that learns, by online temporal difference methods, to use working memory to maximize discounted future rewards in general partially observable settings. The model successfully solves a benchmark working memory problem, and exhibits limitations similar to those observed in human experiments. Moreover, the model introduces a concise, normative definition of high level cognitive concepts such as working memory and cognitive control in terms of maximizing discounted future rewards."


Q-MKL: Matrix-induced Regularization in Multi-Kernel Learning with Applications to Neuroimaging

Neural Information Processing Systems

Multiple Kernel Learning (MKL) generalizes SVMs to the setting where one simultaneously trains a linear classifier and chooses an optimal combination of given base kernels. Model complexity is typically controlled using various norm regularizations on the vector of base kernel mixing coefficients. Existing methods, however, neither regularize nor exploit potentially useful information pertaining to how kernels in the input set'interact'; that is, higher order kernel-pair relationships that can be easily obtained via unsupervised (similarity, geodesics), supervised (correlation in errors), or domain knowledge driven mechanisms (which features were used to construct the kernel?). We show that by substituting the norm penalty with an arbitrary quadratic function Q \succeq 0, one can impose a desired covariance structure on mixing coefficient selection, and use this as an inductive bias when learning the concept. This formulation significantly generalizes the widely used 1- and 2-norm MKL objectives.


SpikeAnts, a spiking neuron network modelling the emergence of organization in a complex system

Neural Information Processing Systems

Many complex systems, ranging from neural cell assemblies to insect societies, involve and rely on some division of labor. How to enforce such a division in a decentralized and distributed way, is tackled in this paper, using a spiking neuron network architecture. Specifically, a spatio-temporal model called SpikeAnts is shown to enforce the emergence of synchronized activities in an ant colony. Each ant is modelled from two spiking neurons; the ant colony is a sparsely connected spiking neuron network. Each ant makes its decision (among foraging, sleeping and self-grooming) from the competition between its two neurons, after the signals received from its neighbor ants.


Efficient Methods for Overlapping Group Lasso

Neural Information Processing Systems

The group Lasso is an extension of the Lasso for feature selection on (predefined) non-overlapping groups of features. The non-overlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation, where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however, much more challenging to solve due to the group overlaps. In this paper, we consider the efficient optimization of the overlapping group Lasso penalized problem.


Goal-directed decision making in prefrontal cortex: a computational framework

Neural Information Processing Systems

Research in animal learning and behavioral neuroscience has distinguished between two forms of action control: a habit-based form, which relies on stored action values, and a goal-directed form, which forecasts and compares action outcomes based on a model of the environment. While habit-based control has been the subject of extensive computational research, the computational principles underlying goal-directed control in animals have so far received less attention. In the present paper, we advance a computational framework for goal-directed control in animals and humans. We take three empirically motivated points as founding premises: (1) Neurons in dorsolateral prefrontal cortex represent action policies, (2) Neurons in orbitofrontal cortex represent rewards, and (3) Neural computation, across domains, can be appropriately understood as performing structured probabilistic inference. On a purely computational level, the resulting account relates closely to previous work using Bayesian inference to solve Markov decision problems, but extends this work by introducing a new algorithm, which provably converges on optimal plans.


Variational Inference over Combinatorial Spaces

Neural Information Processing Systems

Since the discovery of sophisticated fully polynomial randomized algorithms for a range of #P problems (Karzanov et al., 1991; Jerrum et al., 2001; Wilson, 2004), theoretical work on approximate inference in combinatorial spaces has focused on Markov chain Monte Carlo methods. Despite their strong theoretical guarantees, the slow running time of many of these randomized algorithms and the restrictive assumptions on the potentials have hindered the applicability of these algorithms to machine learning. Because of this, in applications to combinatorial spaces simple exact models are often preferred to more complex models that require approximate inference (Siepel et al., 2004). Variational inference would appear to provide an appealing alternative, given the success of variational methods for graphical models (Wainwright et al., 2008); unfortunately, however, it is not obvious how to develop variational approximations for combinatorial objects such as matchings, partial orders, plane partitions and sequence alignments. We propose a new framework that extends variational inference to a wide range of combinatorial spaces.


Characterizing neural dependencies with copula models

Neural Information Processing Systems

The coding of information by neural populations depends critically on the statistical dependencies between neuronal responses. However, there is no simple model that combines the observations that (1) marginal distributions over single-neuron spike counts are often approximately Poisson; and (2) joint distributions over the responses of multiple neurons are often strongly dependent. Here, we show that both marginal and joint properties of neural responses can be captured using Poisson copula models. Copulas are joint distributions that allow random variables with arbitrary marginals to be combined while incorporating arbitrary dependencies between them. Different copulas capture different kinds of dependencies, allowing for a richer and more detailed description of dependencies than traditional summary statistics, such as correlation coefficients.