Goto

Collaborating Authors

Machine Learning


Gaussian Mixture Model

#artificialintelligence

We will be discussing the Gaussian Mixture Model. A basic prerequisite to this blog is that one must know about the Gaussian distribution. The Gaussian is also called the normal distribution by statistics people. However, the GMM is called the GMM because in this scenario the G stands for Gaussian and it's not called a normal mixture model. Let's first start with a basic intuition of what a Gaussian mixture is by considering only a single Gaussian we can begin with a typical example.


Best Laptops for Deep Learning, Machine Learning, and Data Science

#artificialintelligence

Machine learners, deep learning practitioners, and data scientists are continually looking for the edge on their performance-oriented devices. That's why we looked at over 2,000 laptops to bring you what we consider the best laptops for your projects on machine learning, deep learning, and data science. We will continuously update this resource with powerful and more performant laptops for every budget as technology continues to evolve to bring you the best suggestions for your machine learning, data science, and deep learning projects and adventures. Our mailbox is full of emails from AI enthusiasts asking us for the best laptops for AI projects. That's why we decided to make this list.


Google Colab 101 Tutorial with Python -- Tips, Tricks, and FAQ

#artificialintelligence

Google Colab is a project from Google Research, a free, Jupyter based environment that allows us to create Jupyter [programming] notebooks to write and execute Python [1](and other Python-based third-party tools and machine learning frameworks such as Pandas, PyTorch, Tensorflow, Keras, Monk, OpenCV, and others) in a web browser. A programming notebook is a type of shell or kernel in the form of a word processor, where we can write and execute code. The data required for processing in Google Colab can be mounted into Google Drive or imported from any source on the internet. Project Jupyter is an open-source software organization that develops and supports Jupyter notebooks for interactive computing [4]. Google Colab requires no configuration to get started and provides free access to GPUs.


A technique to estimate emotional valence and arousal by analyzing images of human faces

#artificialintelligence

In recent years, countless computer scientists worldwide have been developing deep neural network-based models that can predict people's emotions based on their facial expressions. Most of the models developed so far, however, merely detect primary emotional states such as anger, happiness and sadness, rather than more subtle aspects of human emotion. Past psychology research, on the other hand, has delineated numerous dimensions of emotion, for instance, introducing measures such as valence (i.e., how positive an emotional display is) and arousal (i.e., how calm or excited someone is while expressing an emotion). While estimating valence and arousal simply by looking at people's faces is easy for most humans, it can be challenging for machines. Researchers at Samsung AI and Imperial College London have recently developed a deep-neural-network-based system that can estimate emotional valence and arousal with high levels of accuracy simply by analyzing images of human faces taken in everyday settings.


AAAI 2021: Accelerating the impact of artificial intelligence - Microsoft Research

#artificialintelligence

The purpose of the Association for the Advancement of Artificial Intelligence, according to its bylaws, is twofold. The first is to promote research in the area of AI, and the second is to promote the responsible use of these types of technology. The result was a 35th AAAI Conference on Artificial Intelligence (AAAI-21) schedule that broadens the possibilities of AI and is heavily reflective of a pivotal time in AI research when experts are asking bigger questions about how best to responsibly develop, deploy, and integrate the technology. Microsoft and its researchers have been pursuing and helping to foster responsible AI for years--developing innovative AI ethics checklists and fairness assessment tools like Fairlearn, establishing the Aether Committee to make principle-based recommendations, and laying out guidelines for human-AI interaction, to name only a few of the milestones in this area. As a natural extension, researchers from Microsoft are presenting papers at this year's AAAI that show the wide net they're casting when it comes to developing responsible AI and using it for applications that do good.


Why artificial intelligence is steadily finding its place in agency land

#artificialintelligence

"Talent and technology are the keys to unlocking our future in this industry-- finding ways for tech to come in and do a better job than people can in roles people have traditionally done," said MDC Partners global president Julia Hammond in explaining AI's value to her holding company. "The challenge with that is it's completely contradictory to the agency model, which has been built around people, so there's been a reluctance to build out AI and machine learning. We're actively pursuing it, in how we resource, how we scale and how we serve clients." Progress is being made elsewhere to find a happy middle ground. Last week, GroupM agency Wavemaker went public with its AI-driven media planning tool, Maximize, which the company claims is generating plans faster and more effectively than human planning teams alone. "It's a question of complexity of the problem solved.


Amazon, we don't need another AI tool or APl, we need an open AI platform for cloud and edge

#artificialintelligence

After Amazon's three-week re:Invent conference, companies building AI applications may have the impression that AWS is the only game in town. Amazon announced improvements to SageMaker, its machine learning (ML) workflow service, and to Edge Manager -- improving AWS' ML capabilities on the edge at a time when serving the edge is considered increasingly critical for enterprises. Moreover, the company touted big customers like Lyft and Intuit. But Mohammed Farooq believes there is a better alternative to the Amazon hegemon: an open AI platform that doesn't have any hooks back to the Amazon cloud. Until earlier this year, Farooq led IBM's Hybrid multi-cloud strategy, but he recently left to join the enterprise AI company Hypergiant.


Deep-Learning and 3D Holographic Microscopy Beats Scientists at Analyzing Cancer Immunotherapy

#artificialintelligence

Live tracking and analyzing of the dynamics of chimeric antigen receptor (CAR) T-cells targeting cancer cells can open new avenues for the development of cancer immunotherapy. However, imaging via conventional microscopy approaches can result in cellular damage, and assessments of cell-to-cell interactions are extremely difficult and labor-intensive. When researchers applied deep learning and 3D holographic microscopy to the task, however, they not only avoided these difficultues but found that AI was better at it than humans were. A critical stage in the development of the human immune system's ability to respond not just generally to any invader (such as pathogens or cancer cells) but specifically to that particular type of invader and remember it should it attempt to invade again is the formation of a junction between an immune cell called a T-cell and a cell that presents the antigen, or part of the invader that is causing the problem, to it. This process is like when a picture of a suspect is sent to a police car so that the officers can recognize the criminal they are trying to track down.


Using Exponential Smoothing in Algorithmic Trading.

#artificialintelligence

First, let us start by the usual Stochastic Oscillator before proceeding with the Stochastic Smoothing Oscillator. An overbought level is an area where the market is perceived to be extremely bullish and is bound to consolidate. An oversold level is an area where market is perceived to be extremely bearish and is bound to bounce. Hence, the Stochastic Oscillator is a contrarian indicator that seeks to signal reactions of extreme movements.


Transformers: Opening New Age of Artificial Intelligence Ahead

#artificialintelligence

Artificial intelligence is a disruptive technology that finds more applications each day. But with each new innovation in artificial intelligence technologies like machine learning, deep learning, neural network, the possibilities to scale a new horizon in tech widens up. In the past few years, a form of neural network that is gaining popularity, i.e., Transformers. They employ a simple yet powerful mechanism called attention, which enables artificial intelligence models to selectively focus on certain parts of their input and thus reason more effectively. The attention-mechanism looks at an input sequence and decides at each step which other parts of the sequence are important.