Goto

Collaborating Authors

Automobiles & Trucks


This Magic Box Gives Your Car Autonomous Parking Abilities

#artificialintelligence

Like a magician setting up a trick, Anuja Sonalker starts by making it clear that there is no hidden driver in her car's front or back seat. Next, she presses the phone camera up against the side window and waves it around until I reassure her that I'm satisfied. Sonalker then turns and strides away from the idling vehicle until she is maybe 10 or 15 feet away. Next, she holds up a smartphone displaying the STEER Tech app and taps it a couple of times. In the background, the car springs to life.


Does AI Scream at Electric Creeps?

#artificialintelligence

When most people think of machine learning in relation to themselves, something like the auto-correct peppered throughout their texts might come to mind. But these technologies are integrated into so many industries that touch us daily. In my previous article linked below, I talk about the broad strokes of machine learning by looking into the technologies of self driving cars, healthcare, and briefly touched on the YouTube algorithm. In this article, I'll be diving farther into that last concept by approaching three different violations of terms and services on a social media platform and the role that machine learning has in mitigating any hardships caused by these violations. To fully understand the decision making behavior, we must go over the basics of these algorithms.


A beginner's guide to robot programming with Python

#artificialintelligence

Let's face it, robots are cool. They're also going to run the world some day, and hopefully, at that time they will take pity on their poor soft fleshy creators (a.k.a. I'm joking of course, but only sort of. In my ambition to have some small influence over the matter, I took a course in autonomous robot control theory last year, which culminated in my building a Python-based robotic simulator that allowed me to practice control theory on a simple, mobile, programmable robot. In this article, I'm going to show how to use a Python robot framework to develop control software, describe the control scheme I developed for my simulated robot, illustrate how it interacts with its environment and achieves its goals, and discuss some of the fundamental challenges of robotics programming that I encountered along the way. The snippets of code shown here are just a part of the entire simulator, which relies on classes and interfaces, so in order to read the code directly, you may need some experience in Python and object oriented programming. Finally, optional topics that will help you to better follow this tutorial are knowing what a state machine is and how range sensors and encoders work. The fundamental challenge of all robotics is this: It is impossible to ever know the true state of the environment. Robot control software can only guess the state of the real world based on measurements returned by its sensors. It can only attempt to change the state of the real world through the generation of control signals.


How Will Autonomous Cars Affect Insurance?

#artificialintelligence

Almost most of the major automakers are developing autonomous cars of some kind. Some, like Tesla's Autopilot and Google's Waymo, already are in use, though they're maybe not fully autonomous yet. Tesla and Waymo, like so many other automakers in the autonomous car race, remain ironing out the kinks. In the meantime, one of the biggest debates surrounding driverless cars is how they'll impact the insurance industry. If human error causes virtually all car accidents, then in theory, self-driving cars would be the solution.


How To Create An AI (Artificial Intelligence) Model

#artificialintelligence

Digital generated image of data. Lemonade is one of this year's hottest IPOs and a key reason for this is the company's heavy investments in AI (Artificial Intelligence). The company has used this technology to develop bots to handle the purchase of policies and the managing of claims. Then how does a company like this create AI models? Well, as should be no surprise, it is complex and susceptible to failure.


Autonomous vehicles: how safe is safe enough?

#artificialintelligence

The potentially enormous safety benefits of self-driving vehicles have long been considered to be among the technology's biggest assets. Numerous research projects have found human error is a contributing factor in between 85% and 95% of current road collisions. The conventional thinking has been that if you remove human error through the use of fully autonomous technology, then the collision rate would fall by a similar amount. This has been a strong selling point for self-driving vehicles to a public which, so far, seems unwilling to trust the technology. For example, research conducted last year on behalf of the Institution of Mechanical Engineers found 60% of people said they would always prefer to drive themselves rather than use a self-driving vehicle, while two-thirds of people are uncomfortable with the idea of travelling in a driverless car.


AI for self-driving cars doesn't account for crime -- GCN

#artificialintelligence

Existing approaches to artificial intelligence for self-driving cars don't account for the fact that people might try to use the autonomous vehicles to do something bad, researchers report. For example, let's say that there is an autonomous vehicle with no passengers and it's about to crash into a car containing five people. It can avoid the collision by swerving out of the road, but it would then hit a pedestrian. Most discussions of ethics in this scenario focus on whether the autonomous vehicle's AI should be selfish (protecting the vehicle and its cargo) or utilitarian (choosing the action that harms the fewest people). But that either/or approach to ethics can raise problems of its own.


A new way to train AI systems could keep them safer from hackers

#artificialintelligence

The context: One of the best unsolved defects of deep knowing is its vulnerability to so-called adversarial attacks. When included to the input of an AI system, these perturbations, apparently random or undetected to the human eye, can make things go totally awry. Stickers tactically put on a stop indication, for instance, can deceive a self-driving automobile into seeing a speed limitation indication for 45 miles per hour, while sticker labels on a roadway can puzzle a Tesla into drifting into the incorrect lane. Safety important: Most adversarial research study concentrates on image acknowledgment systems, however deep-learning-based image restoration systems are susceptible too. This is especially uncomfortable in healthcare, where the latter are typically utilized to rebuild medical images like CT or MRI scans from x-ray information.


Elon Musk Reveals How Close Tesla Is to Full Self-Driving Cars At China AI Conference

#artificialintelligence

Elon Musk delivers a remote speech at the World Artificial Intelligence Conference on Thursday. Tesla CEO Elon Musk delivered a brief speech via remote video to the attendants of this year's World Artificial Intelligence Conference (WAIC) in Shanghai, China on Thursday, kicking off the country's most important tech conference. Musk answered questions about Tesla's latest development in artificial intelligence, a central piece of technology behind the company's "Autopilot" semi-autonomous driving system. China is Tesla's biggest market outside the United States. Since introducing the first version of Autopilot in 2014, Tesla has upgraded the system multiple times.


Elon Musk's Boring Company hosts contest to find a machine that digs a tunnel faster than a snail

Daily Mail - Science & tech

Elon Musk envisions tunnels deep in the ground to solve'soul-destroying traffic' – but now he needs your help. The billionaire is hosting a competition through The Boring Company that challenges the public to dig a 98-foot deep tunnel with a circular opening of 19.7 inches. According to The Boring Company's site, the main objective of the contest is to dig faster than a snail, which is 14 times faster than its own machine. Three winners are set to be chosen in spring 2021 for fastest to complete the tunnel, along with one that has a driving surface that a Tesla remote controlled car can drive through. Elon Musk envisions tunnels deep in the ground to solve'soul-destroying traffic' – but now he needs your help.