Course Syllabus & Notes
Direct Feedback Alignment Provides Learning in Deep Neural Networks
Artificial neural networks are most commonly trained with the back-propagation algorithm, where the gradient for learning is provided by back-propagating the error, layer by layer, from the output layer to the hidden layers. A recently discovered method called feedback-alignment shows that the weights used for propagating the error backward don't have to be symmetric with the weights used for propagation the activation forward. In fact, random feedback weights work evenly well, because the network learns how to make the feedback useful. In this work, the feedback alignment principle is used for training hidden layers more independently from the rest of the network, and from a zero initial condition. The error is propagated through fixed random feedback connections directly from the output layer to each hidden layer. This simple method is able to achieve zero training error even in convolutional networks and very deep networks, completely without error backpropagation. The method is a step towards biologically plausible machine learning because the error signal is almost local, and no symmetric or reciprocal weights are required. Experiments show that the test performance on MNIST and CIFAR is almost as good as those obtained with back-propagation for fully connected networks. If combined with dropout, the method achieves 1.45% error on the permutation invariant MNIST task.
Assistive Teaching of Motor Control Tasks to Humans
Recent works on shared autonomy and assistive-AI technologies, such as assistive robot teleoperation, seek to model and help human users with limited ability in a fixed task. However, these approaches often fail to account for humans' ability to adapt and eventually learn how to execute a control task themselves. Furthermore, in applications where it may be desirable for a human to intervene, these methods may inhibit their ability to learn how to succeed with full self-control. In this paper, we focus on the problem of assistive teaching of motor control tasks such as parking a car or landing an aircraft. Despite their ubiquitous role in humans' daily activities and occupations, motor tasks are rarely taught in a uniform way due to their high complexity and variance. We propose an AI-assisted teaching algorithm that leverages skill discovery methods from reinforcement learning (RL) to (i) break down any motor control task into teachable skills, (ii) construct novel drill sequences, and (iii) individualize curricula to students with different capabilities. Through an extensive mix of synthetic and user studies on two motor control tasks-- parking a car with a joystick and writing characters from the Balinese alphabet--we show that assisted teaching with skills improves student performance by around 40% compared to practicing full trajectories without skills, and practicing with individualized drills can result in up to 25% further improvement.
Towards General Loop Invariant Generation: A Benchmark of Programs with Memory Manipulation Chang Liu
Program verification is vital for ensuring software reliability, especially in the context of increasingly complex systems. Loop invariants, remaining true before and after each iteration of loops, are crucial for this verification process. Traditional provers and machine learning based methods for generating loop invariants often require expert intervention or extensive labeled data, and typically only handle numerical property verification.
Anytime-Competitive Reinforcement Learning with Policy Prior
This paper studies the problem of Anytime-Competitive Markov Decision Process (A-CMDP). Existing works on Constrained Markov Decision Processes (CMDPs) aim to optimize the expected reward while constraining the expected cost over random dynamics, but the cost in a specific episode can still be unsatisfactorily high. In contrast, the goal of A-CMDP is to optimize the expected reward while guaranteeing a bounded cost in each round of any episode against a policy prior. We propose a new algorithm, called Anytime-Competitive Reinforcement Learning (ACRL), which provably guarantees the anytime cost constraints. The regret analysis shows the policy asymptotically matches the optimal reward achievable under the anytime competitive constraints. Experiments on the application of carbonintelligent computing verify the reward performance and cost constraint guarantee of ACRL.
Lean Workbook: A large-scale Lean problem set formalized from natural language math problems
Large language models have demonstrated impressive capabilities across various natural language processing tasks, especially in solving mathematical problems. However, large language models are not good at math theorem proving using formal languages like Lean. A significant challenge in this area is the scarcity of training data available in these formal languages. To address this issue, we propose a novel pipeline that iteratively generates and filters synthetic data to translate natural language mathematical problems into Lean 4 statements, and vice versa. Our results indicate that the synthetic data pipeline can provide useful training data and improve the performance of LLMs in translating and understanding complex mathematical problems and proofs. Our final dataset contains about 57K formal-informal question pairs along with searched proof from the math contest forum and 21 new IMO questions.
MetaTeacher: Coordinating Multi-Model Domain Adaptation for Medical Image Classification
In medical image analysis, often we need to build an image recognition system for a target scenario with the access to small labeled data and abundant unlabeled data, as well as multiple related models pretrained on different source scenarios. This presents the combined challenges of multi-source-free domain adaptation and semisupervised learning simultaneously. However, both problems are typically studied independently in the literature, and how to effectively combine existing methods is non-trivial in design. In this work, we introduce a novel MetaTeacher framework with three key components: (1) A learnable coordinating scheme for adaptive domain adaptation of individual source models, (2) A mutual feedback mechanism between the target model and source models for more coherent learning, and (3) A semi-supervised bilevel optimization algorithm for consistently organizing the adaption of source models and the learning of target model. It aims to leverage the knowledge of source models adaptively whilst maximize their complementary benefits collectively to counter the challenge of limited supervision. Extensive experiments on five chest x-ray image datasets show that our method outperforms clearly all the state-of-the-art alternatives.