to

A Comprehensive Guide To Genetic Algorithms -- The ELI5 Way

Genetic Algorithms are based on Charles Darwin's theory of natural selection and are often used to solve problems in research and machine learning. In this article, we'll be looking at the fundamentals of Genetic Algorithms (GA) and how to solve optimization problems using them. Genetic algorithms were developed by John Henry Holland and his students and collaborators at the University of Michigan in the 1970s and 1980s. It is a subset of evolutionary algorithms, and it mimics the process of natural selection in which the fittest individuals survive and are chosen for cross-over to reproduce offsprings of the next-generation. The natural selection process also involves the addition of small randomness to the offsprings in the form of mutation.

Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?

Bayesian optimisation presents a sample-efficient methodology for global optimisation. Within this framework, a crucial performance-determining subroutine is the maximisation of the acquisition function, a task complicated by the fact that acquisition functions tend to be non-convex and thus nontrivial to optimise. In this paper, we undertake a comprehensive empirical study of approaches to maximise the acquisition function. Additionally, by deriving novel, yet mathematically equivalent, compositional forms for popular acquisition functions, we recast the maximisation task as a compositional optimisation problem, allowing us to benefit from the extensive literature in this field. We highlight the empirical advantages of the compositional approach to acquisition function maximisation across 3958 individual experiments comprising synthetic optimisation tasks as well as tasks from Bayesmark. Given the generality of the acquisition function maximisation subroutine, we posit that the adoption of compositional optimisers has the potential to yield performance improvements across all domains in which Bayesian optimisation is currently being applied.

Quality-Diversity Optimization: a novel branch of stochastic optimization

Traditional optimization algorithms search for a single global optimum that maximizes (or minimizes) the objective function. Multimodal optimization algorithms search for the highest peaks in the search space that can be more than one. Quality-Diversity algorithms are a recent addition to the evolutionary computation toolbox that do not only search for a single set of local optima, but instead try to illuminate the search space. In effect, they provide a holistic view of how high-performing solutions are distributed throughout a search space. The main differences with multimodal optimization algorithms are that (1) Quality-Diversity typically works in the behavioral space (or feature space), and not in the genotypic (or parameter) space, and (2) Quality-Diversity attempts to fill the whole behavior space, even if the niche is not a peak in the fitness landscape. In this chapter, we provide a gentle introduction to Quality-Diversity optimization, discuss the main representative algorithms, and the main current topics under consideration in the community. Throughout the chapter, we also discuss several successful applications of Quality-Diversity algorithms, including deep learning, robotics, and reinforcement learning.

Squirrel: A Switching Hyperparameter Optimizer

In this short note, we describe our submission to the NeurIPS 2020 BBO challenge. Motivated by the fact that different optimizers work well on different problems, our approach switches between different optimizers. Since the team names on the competition's leaderboard were randomly generated "alliteration nicknames", consisting of an adjective and an animal with the same initial letter, we called our approach the Switching Squirrel, or here, short, Squirrel. The challenge mandated to suggest 16 successive batches of 8 hyperparameter configurations at a time. We chose to only use one optimizer for a given batch, warmstarted with all previous observations.

Solving the Travelling Thief Problem based on Item Selection Weight and Reverse Order Allocation

The Travelling Thief Problem (TTP) is a challenging combinatorial optimization problem that attracts many scholars. The TTP interconnects two well-known NP-hard problems: the Travelling Salesman Problem (TSP) and the 0-1 Knapsack Problem (KP). Increasingly algorithms have been proposed for solving this novel problem that combines two interdependent sub-problems. In this paper, TTP is investigated theoretically and empirically. An algorithm based on the score value calculated by our proposed formulation in picking items and sorting items in the reverse order in the light of the scoring value is proposed to solve the problem. Different approaches for solving the TTP are compared and analyzed; the experimental investigations suggest that our proposed approach is very efficient in meeting or beating current state-of-the-art heuristic solutions on a comprehensive set of benchmark TTP instances.

Theoretical Analyses of Multi-Objective Evolutionary Algorithms on Multi-Modal Objectives

Previous theory work on multi-objective evolutionary algorithms considers mostly easy problems that are composed of unimodal objectives. This paper takes a first step towards a deeper understanding of how evolutionary algorithms solve multi-modal multi-objective problems. We propose the OneJumpZeroJump problem, a bi-objective problem whose single objectives are isomorphic to the classic jump functions benchmark. We prove that the simple evolutionary multi-objective optimizer (SEMO) cannot compute the full Pareto front. In contrast, for all problem sizes~$n$ and all jump sizes $k \in [4..\frac n2 - 1]$, the global SEMO (GSEMO) covers the Pareto front in $\Theta((n-2k)n^{k})$ iterations in expectation. To improve the performance, we combine the GSEMO with two approaches, a heavy-tailed mutation operator and a stagnation detection strategy, that showed advantages in single-objective multi-modal problems. Runtime improvements of asymptotic order at least $k^{\Omega(k)}$ are shown for both strategies. Our experiments verify the {substantial} runtime gains already for moderate problem sizes. Overall, these results show that the ideas recently developed for single-objective evolutionary algorithms can be effectively employed also in multi-objective optimization.

Reverse Arrow of Time with Genetic Algorithm and GPU

Genetic algorithms are among the most fascinating techniques for optimizing problems. They draw inspiration from Charles Darwin's theory of natural evolution. For this competition, individuals considered are potential boards at their initial state. I also included a hyper-parameter to set how many cells are live (20% in sample code below). You are evaluated on the mean absolute error of your predictions, stepped forward by the specified, and compared to the provided ending solution.

Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases

Existing studies on question answering on knowledge bases (KBQA) mainly operate with the standard i.i.d assumption, i.e., training distribution over questions is the same as the test distribution. However, i.i.d may be neither reasonably achievable nor desirable on large-scale KBs because 1) true user distribution is hard to capture and 2) randomly sample training examples from the enormous space would be highly data-inefficient. Instead, we suggest that KBQA models should have three levels of built-in generalization: i.i.d, compositional, and zero-shot. To facilitate the development of KBQA models with stronger generalization, we construct and release a new large-scale, high-quality dataset with 64,331 questions, GrailQA, and provide evaluation settings for all three levels of generalization. In addition, we propose a novel BERT-based KBQA model. The combination of our dataset and model enables us to thoroughly examine and demonstrate, for the first time, the key role of pre-trained contextual embeddings like BERT in the generalization of KBQA.

Digital Twins Are Not Monozygotic -- Cross-Replicating ADAS Testing in Two Industry-Grade Automotive Simulators

The increasing levels of software- and data-intensive driving automation call for an evolution of automotive software testing. As a recommended practice of the Verification and Validation (V&V) process of ISO/PAS 21448, a candidate standard for safety of the intended functionality for road vehicles, simulation-based testing has the potential to reduce both risks and costs. There is a growing body of research on devising test automation techniques using simulators for Advanced Driver-Assistance Systems (ADAS). However, how similar are the results if the same test scenarios are executed in different simulators? We conduct a replication study of applying a Search-Based Software Testing (SBST) solution to a real-world ADAS (PeVi, a pedestrian vision detection system) using two different commercial simulators, namely, TASS/Siemens PreScan and ESI Pro-SiVIC. Based on a minimalistic scene, we compare critical test scenarios generated using our SBST solution in these two simulators. We show that SBST can be used to effectively and efficiently generate critical test scenarios in both simulators, and the test results obtained from the two simulators can reveal several weaknesses of the ADAS under test. However, executing the same test scenarios in the two simulators leads to notable differences in the details of the test outputs, in particular, related to (1) safety violations revealed by tests, and (2) dynamics of cars and pedestrians. Based on our findings, we recommend future V&V plans to include multiple simulators to support robust simulation-based testing and to base test objectives on measures that are less dependant on the internals of the simulators.

Visual Perception Generalization for Vision-and-Language Navigation via Meta-Learning

Vision-and-language navigation (VLN) is a challenging task that requires an agent to navigate in real-world environments by understanding natural language instructions and visual information received in real-time. Prior works have implemented VLN tasks on continuous environments or physical robots, all of which use a fixed camera configuration due to the limitations of datasets, such as 1.5 meters height, 90 degrees horizontal field of view (HFOV), etc. However, real-life robots with different purposes have multiple camera configurations, and the huge gap in visual information makes it difficult to directly transfer the learned navigation model between various robots. In this paper, we propose a visual perception generalization strategy based on meta-learning, which enables the agent to fast adapt to a new camera configuration with a few shots. In the training phase, we first locate the generalization problem to the visual perception module, and then compare two meta-learning algorithms for better generalization in seen and unseen environments. One of them uses the Model-Agnostic Meta-Learning (MAML) algorithm that requires a few shot adaptation, and the other refers to a metric-based meta-learning method with a feature-wise affine transformation layer. The experiment results show that our strategy successfully adapts the learned navigation model to a new camera configuration, and the two algorithms show their advantages in seen and unseen environments respectively.