Goto

Collaborating Authors

deep learning


Has OpenAI Surpassed DeepMind?

#artificialintelligence

OpenAI's GPT-3 is the talk of the town, and the media is giving it all the attention. Many analysts are even comparing it to AGI because of its practical applicability. Initially disclosed in a research paper in May, GPT-3 is the next version of GPT-2 and is 100x larger than it. It is far more competent than its forerunner due to the number of parameters it is trained on, which is 175 billion for GPT-3 versus 1.5 billion for GPT-2. After the successful launch of GPT-3, other AI companies seem to have been overshadowed.


Artificial Intelligence: Trends & Applications To Watch In 2020 - Simpliv Blog

#artificialintelligence

For movie buffs, the work that the factory machines do in Charlie Chaplin's 1936 classic, Modern Times, may have seemed too futuristic for its time. Fast forward eight decades, and the colossal changes that Artificial Intelligence is catalyzing around us will most likely give the same impression to our future generations. There is one crucial difference though: while those advancements were in movies, what we are seeing today are real. A question that seems to be on everyone's mind is, What is Artificial Intelligence? The pace at which AI is moving, as well as the breadth and scope of the areas it encompasses, ensure that it is going to change our lives beyond the normal.


The Next AI Frontier – Software That Writes Software - Liwaiwai

#artificialintelligence

Depending on your opinion, Artificial Intelligence is either a threat or the next big thing. Even though its deep learning capabilities are being applied to help solve large problems, like the treatment and prevention of human and genetic disorders, or small problems, like what movie to stream tonight, AI in many of its forms (such as machine learning, deep learning and cognitive computing) is still in its infancy in terms of being adopted to generate software code. AI is evolving from the stuff of science fiction, research, and limited industry implementations, to adoption across a multitude of fields, including retail, banking, telecoms, insurance, healthcare, and government. However, for the one field ripe for AI adoption – the software industry – progress is curiously slow. Consider this: why isn't an industry, which is built on esoteric symbols, machine syntax, and repetitive loops and functions, all-in on automating code?


What is Deep Learning - Idiot Developer

#artificialintelligence

Currently, Artificial Intelligence (AI) is progressing at a great pace and deep learning is one of the main reasons for this, so all the people need to get a basic understanding of it. Deep Learning is a subset of Machine Learning, which in turn is a subset of Artificial Intelligence. Deep Learning uses a class of algorithms called artificial neural networks which are inspired by the way the biological neural network functions inside the brain. The advancement in the field of deep learning is due to the tremendous increase in computational power and the presence of a huge amount of data. Deep learning is very much efficient in problem-solving as compared to other traditional machine learning algorithms.


Simultaneous clustering and representation learning

AIHub

The success of deep learning over the last decade, particularly in computer vision, has depended greatly on large training data sets. Even though progress in this area boosted the performance of many tasks such as object detection, recognition, and segmentation, the main bottleneck for future improvement is more labeled data. Self-supervised learning is among the best alternatives for learning useful representations from the data. In this article, we will briefly review the self-supervised learning methods in the literature and discuss the findings of a recent self-supervised learning paper from ICLR 2020 [14]. We may assume that most learning problems can be tackled by having clean labeling and more data obtained in an unsupervised way.


Artificial Intelligence Before Explosion – Here are Promising AI Projects - Intelvue

#artificialintelligence

Artificial Intelligence (AI) is not the one that is borne by the overwhelming science fiction vision. In the near future, we will see almost every area of life in order to make our activities more effective and interactive. According to China's search engine, Baidu's top researcher, "Reliability of speech technology approaches the point we will only use and do not even think about." Andrew Ng says the best technology is often invisible, and speech recognition will disappear in the background as well. Baidu is currently working on more accurate speech recognition and more efficient sentence analysis, which expects sound technologies to be able to interact with multiple devices such as household appliances.


Stock price prediction using LSTM (Long Short-Term Memory)

#artificialintelligence

Convert the Xtrain and Ytrain data set into NumPy array because it will take for training the LSTM model.LSTM model has a 3-Dimensional data set [number of samples, time steps, features]. Therefore, we need to reshape the data from 2-Dimensional to 3-Dimensional. Below the code, snapshot illustrates a clear idea about reshaping the data set.Create the LSTM model which has two LSTM layers that contain fifty neurons also it has 2 Dense layers that one layer contains twenty-five neurons and the other has one neuron. In order to create a model that sequential input of the LSTM model which creates by using Keras library on DNN (Deep Neural Network). The compile LSTM model is using MSE (Mean Squared Error) for loss function and the optimizer to be the "adam".


Real Time Anomaly Detection for Cognitive Intelligence - XenonStack

#artificialintelligence

Classical Analytics – Around ten years ago, the tools for analytics or the available resources were excel, SQL databases, and similar relatively simple ones when compared to the advanced ones that are available nowadays. The analytics also used to target things like reporting, customer classification, sales trend whether they are going up or down, etc.In this article we will discuss about Real Time Anomaly Detection. As time passed by the amount of data has got a revolutionary explosion with various factors like social media data, transaction records, sensor information, etc. in the past five years. With the increase of data, how data is stored has also changed. It used to be SQL databases the most and analytics used to happen for the same during the ideal time. The analytics also used to be serialized. Later, NoSQL databases started to replace the traditional SQL databases since the data size has become huge and the analysis also changed from serial analytics to parallel processing and distributed systems for quick results.



How Deep Learning Can Keep You Safe with Real-Time Crime Alerts

#artificialintelligence

Citizen scans thousands of public first responder radio frequencies 24 hours a day in major cities across the US. The collected information is used to provide real-time safety alerts about incidents like fires, robberies, and missing persons to more than 5M users. Having humans listen to 1000 hours of audio daily made it very challenging for the company to launch new cities. To continue scaling, we built ML models that could discover critical safety incidents from audio. Our custom software-defined radios (SDRs) capture large swathes of radio frequency (RF) and create optimized audio clips that are sent to an ML model to flag relevant clips.