Goto

Collaborating Authors

Personal Assistant Systems: Overviews


Artificial Intelligence in Medicine : An Overview SaveDelete

#artificialintelligence

Artificial intelligence (AI) is the term used to describe the use of computers and technology to simulate intelligent behavior and critical thinking comparable to a human being. John McCarthy first defined the term AI in 1956 as the science and engineering of making intelligent machines. The following article gives a broad overview of AI in medicine, dealing with the terms and concepts as well as the current and future applications of AI. It aims to develop knowledge and familiarity with AI among primary care physicians. AI promises to change the practice of medicine in hitherto unknown ways.


Federated Multi-view Matrix Factorization for Personalized Recommendations

arXiv.org Machine Learning

We introduce the federated multi-view matrix factorization method that extends the federated learning framework to matrix factorization with multiple data sources. Our method is able to learn the multi-view model without transferring the user's personal data to a central server. As far as we are aware this is the first federated model to provide recommendations using multi-view matrix factorization. The model is rigorously evaluated on three datasets on production settings. Empirical validation confirms that federated multi-view matrix factorization outperforms simpler methods that do not take into account the multi-view structure of the data, in addition, it demonstrates the usefulness of the proposed method for the challenging prediction tasks of cold-start federated recommendations.


Automated Utterance Generation

arXiv.org Artificial Intelligence

Conversational AI assistants are becoming popular and question-answering is an important part of any conversational assistant. Using relevant utterances as features in question-answering has shown to improve both the precision and recall for retrieving the right answer by a conversational assistant. Hence, utterance generation has become an important problem with the goal of generating relevant utterances (sentences or phrases) from a knowledge base article that consists of a title and a description. However, generating good utterances usually requires a lot of manual effort, creating the need for an automated utterance generation. In this paper, we propose an utterance generation system which 1) uses extractive summarization to extract important sentences from the description, 2) uses multiple paraphrasing techniques to generate a diverse set of paraphrases of the title and summary sentences, and 3) selects good candidate paraphrases with the help of a novel candidate selection algorithm.


A Survey on Conversational Recommender Systems

arXiv.org Artificial Intelligence

Recommender systems are software applications that help users to find items of interest in situations of information overload. Current research often assumes a one-shot interaction paradigm, where the users' preferences are estimated based on past observed behavior and where the presentation of a ranked list of suggestions is the main, one-directional form of user interaction. Conversational recommender systems (CRS) take a different approach and support a richer set of interactions. These interactions can, for example, help to improve the preference elicitation process or allow the user to ask questions about the recommendations and to give feedback. The interest in CRS has significantly increased in the past few years. This development is mainly due to the significant progress in the area of natural language processing, the emergence of new voice-controlled home assistants, and the increased use of chatbot technology. With this paper, we provide a detailed survey of existing approaches to conversational recommendation. We categorize these approaches in various dimensions, e.g., in terms of the supported user intents or the knowledge they use in the background. Moreover, we discuss technological approaches, review how CRS are evaluated, and finally identify a number of gaps that deserve more research in the future.


Multi-label learning for dynamic model type recommendation

arXiv.org Machine Learning

Dynamic selection techniques aim at selecting the local experts around each test sample in particular for performing its classification. While generating the classifier on a local scope may make it easier for singling out the locally competent ones, as in the online local pool (OLP) technique, using the same base-classifier model in uneven distributions may restrict the local level of competence, since each region may have a data distribution that favors one model over the others. Thus, we propose in this work a problem-independent dynamic base-classifier model recommendation for the OLP technique, which uses information regarding the behavior of a portfolio of models over the samples of different problems to recommend one (or several) of them on a per-instance manner. Our proposed framework builds a multi-label meta-classifier responsible for recommending a set of relevant model types based on the local data complexity of the region surrounding each test sample. The OLP technique then produces a local pool with the model that yields the highest probability score of the meta-classifier. Experimental results show that different data distributions favored different model types on a local scope. Moreover, based on the performance of an ideal model type selector, it was observed that there is a clear advantage in choosing a relevant model type for each test instance. Overall, the proposed model type recommender system yielded a statistically similar performance to the original OLP with fixed base-classifier model. Given the novelty of the approach and the gap in performance between the proposed framework and the ideal selector, we regard this as a promising research direction. Code available at github.com/marianaasouza/dynamic-model-recommender.


A Survey on Edge Intelligence

arXiv.org Artificial Intelligence

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.


Deep Learning on Knowledge Graph for Recommender System: A Survey

arXiv.org Artificial Intelligence

Recent advances in research have demonstrated the effectiveness of knowledge graphs (KG) in providing valuable external knowledge to improve recommendation systems (RS). A knowledge graph is capable of encoding high-order relations that connect two objects with one or multiple related attributes. With the help of the emerging Graph Neural Networks (GNN), it is possible to extract both object characteristics and relations from KG, which is an essential factor for successful recommendations. In this paper, we provide a comprehensive survey of the GNN-based knowledge-aware deep recommender systems. Specifically, we discuss the state-of-the-art frameworks with a focus on their core component, i.e., the graph embedding module, and how they address practical recommendation issues such as scalability, cold-start and so on. We further summarize the commonly-used benchmark datasets, evaluation metrics as well as open-source codes. Finally, we conclude the survey and propose potential research directions in this rapidly growing field.


Four Quick Facts About How AI Is Changing The World

#artificialintelligence

Artificial intelligence technology has continued to grow in recent years, stunning the world with its latest innovations. But, some are admittedly growing weary about AI and its continuous growth. With talk of robots one day replacing humans for labor, concerns of an increasingly tech dependent world grow stronger. A report from Oxford researchers stated that 47% of American jobs will be at risk by 2030 because of automation. However, AI is truly changing the world - providing innovation that can change how we approach healthcare, the environment, and the day to day act of living.


Four Quick Facts About How AI Is Changing The World

#artificialintelligence

Artificial intelligence technology has continued to grow in recent years, stunning the world with its latest innovations. But, some are admittedly growing weary about AI and its continuous growth. With talk of robots one day replacing humans for labor, concerns of an increasingly tech dependent world grow stronger. A report from Oxford researchers stated that 47% of American jobs will be at risk by 2030 because of automation. However, AI is truly changing the world - providing innovation that can change how we approach healthcare, the environment, and the day to day act of living.


Foundations of Explainable Knowledge-Enabled Systems

arXiv.org Artificial Intelligence

Explainability has been an important goal since the early days of Artificial Intelligence. Several approaches for producing explanations have been developed. However, many of these approaches were tightly coupled with the capabilities of the artificial intelligence systems at the time. With the proliferation of AI-enabled systems in sometimes critical settings, there is a need for them to be explainable to end-users and decision-makers. We present a historical overview of explainable artificial intelligence systems, with a focus on knowledge-enabled systems, spanning the expert systems, cognitive assistants, semantic applications, and machine learning domains. Additionally, borrowing from the strengths of past approaches and identifying gaps needed to make explanations user- and context-focused, we propose new definitions for explanations and explainable knowledge-enabled systems.