Neural Networks


Building Mario Levels with Machine Learning AI and Games

#artificialintelligence

It's been 10 years since the first ever Mario AI Competition, so I return to the world of Super Mario level generation research and catch up one some of the more interesting examples that have arisen in recent years. This video is inspired by the following AI research papers and projects: NOOR SHAKER: http://lynura.com/publications.php It's is supported through and wouldn't be possible wthout the wonderful people who support it on Patreon. You can follow AI and Games (and me) on Facebook, Twitter and Instagram: http://www.facebook.com/AIandGames


Deep learning and machine learning to transform cybersecurity

#artificialintelligence

CYBERSECURITY specialists have been betting on artificial intelligence (AI) to defend their organizations against sophisticated cyberattacks for quite a while now -- and it seems as though deep learning and machine learning have the potential to deliver. AI is a broad term that encompasses computer vision, machine learning, and deep learning, and generally offers the ability to mimic human actions, intelligently, and at incredible speed. For hackers trying to "guess" a password, it means AI can not only use "trial and error" to break into a victim's account much faster but also do it intelligently so that that the account doesn't get locked before the right password is guessed. On the other side of the fence, or network, cybersecurity professionals didn't immediately benefit from AI because systems in place don't automatically lend themselves to the technology -- however, experts bet on two niche elements of AI to find a solution. Those niche areas are machine learning and deep learning.


Best Use of Train/Val/Test Splits with Tips for Medical Data

#artificialintelligence

This post addresses the appropriate way to split data into a training set, validation set, and test set, and how to use each of these sets to their maximum potential. It also discusses concepts specific to medical data with the motivation that the basic unit of medical data is the patient, not the example. If you are already familiar with the philosophy behind splitting a data set into training, validation, and test sets, feel free to skip this section. Otherwise, here's how and why we split data in machine learning. A data set for supervised learning is composed of examples.


Future of the deep learning? Geekboots Story

#artificialintelligence

You might not know it, but deep learning already plays a part in our everyday life. When you speak to your phone via Cortana, Siri or Google Now and it fetches information, or you type in the Google search box and it predicts what you are looking for before you finish, you are doing something that has only been made possible by deep learning. Deep learning is part of a broader family of machine learning methods based on learning data representations, as opposed to task-specific algorithms. It also is known as deep structured learning or hierarchical learning. The term Deep Learning was introduced to the machine learning community by Rina Dechter in 1986, and to Artificial Neural Networks by Igor Aizenberg and colleagues in 2000, in the context of Boolean threshold neurons.


Deep Learning A-Z : Hands-On Artificial Neural Networks

#artificialintelligence

Artificial intelligence is growing exponentially. There is no doubt about that. Self-driving cars are clocking up millions of miles, IBM Watson is diagnosing patients better than armies of doctors and Google Deepmind's AlphaGo beat the World champion at Go – a game where intuition plays a key role. But the further AI advances, the more complex become the problems it needs to solve. And only Deep Learning can solve such complex problems and that's why it's at the heart of Artificial intelligence.


Global Deep Learning Software Market 2019 Artelnics, Bright Computing, BAIR, Intel, Cognex, IBM, Keras – Industry News Room

#artificialintelligence

The report on the Global Deep Learning Software Market offers complete data on the Deep Learning Software market. Components, for example, main players, analysis, size, situation of the business, SWOT analysis, and best patterns in the market are included in the report. In addition to this, the report sports numbers, tables, and charts that offer a clear viewpoint of the Deep Learning Software market. The top Players/Vendors Artelnics, Bright Computing, BAIR, Intel, Cognex, IBM, Keras, Microsoft, VLFeat, NIVIDA, PaddlePaddle, Torch, SignalBox, Wolfram of the global Deep Learning Software market are further covered in the report. The latest data has been presented in the study on the revenue numbers, product details, and sales of the major firms.


Machine Learning Tips From Booz Allen: Minimizing Pitfalls, Maximizing Performance

#artificialintelligence

"Some of the deep learning neural networks require tremendous amounts of computing power to train the systems," Elliot said. Properly planning for and designing an infrastructure that can support your specific environment's computational processing and storage requirements is critical to attaining AI's benefits. Furthermore, organizations may start too big, have the wrong data, or have a lot of data that's unusable, he said. Getting data assets and capabilities in place will deliver a huge lift to any planned AI project. Take a look at your talent.


Microsoft Vision AI Developer Kit Simplifies Building Vision-Based Deep Learning Projects

#artificialintelligence

For the Vision AI Developer Kit, Microsoft and Qualcomm have partnered to simplify training and deploying computer vision-based AI models. Developers can use Microsoft's cloud-based AI and IoT services on Azure to train models while deploying them on the smart camera edge device powered by a Qualcomm's AI accelerator. Let's take a close look at Vision AI Developer Kit. The Vision AI Developer Kit not only looks stylish and sophisticated, but also boasts of an impressive configuration. The kit is powered by a Qualcomm Snapdragon 603 processor, 4GB of LDDR4X memory and 16GB of eMMC storage.


Huawei Wants To Tackle NVIDIA And Google With A Solid AI Strategy

#artificialintelligence

It supports mainstream deep learning frameworks such as TensorFlow, PyTorch and PaddlePaddle. Tensor Engine and its operators are Huawei's equivalent of NVIDIA cuDNN, a library that makes CUDA accessible to AI developers. MindSpore is Huawei's own unified training/inference framework architected to be design-friendly, operations-friendly that's adaptable to multiple scenarios. It includes core subsystems, such as a model library, graph compute, and tuning toolkit; a unified, distributed architecture for machine learning, deep learning, and reinforcement learning; a flexible program interface along with support for multiple languages. MindSpore is highly optimized for Ascend chips. It takes advantage of the hardware innovations that went into the design of the AI chips.


How deep learning can maximize player performance in sports

#artificialintelligence

We treat athletes as if they are real-life superheroes that overcome physical challenges to achieve greatness in their respective sports. Today's athletes are physically faster, stronger and more agile than the generation before, but something is wrong. We have not made the same progress in improving athletes' mental skills and health as we have physical skills and health. The focus of any individual or team sport is to maximize player performance. In our sports culture, we are obsessed with team and player statistics using traditional measures in each sport.