Collaborating Authors

Course Syllabus & Notes

25 Best edX Courses for Data Science and Machine Learning


The course material of this course is available freely. But for the certificate, you have to pay. In this course, you will learn the foundational TensorFlow concepts such as the main functions, operations, and execution pipelines. This course will also teach how to use TensorFlow in curve fitting, regression, classification, and minimization of error functions. You will understand different types of Deep Architectures, such as Convolutional Networks, Recurrent Networks, and Autoencoders.

11 Enterprise AI Trends to Know - DATAVERSITY


AI adoption continues to expand across the globe, with Gartner predicting that organizations over the next five years will "adopt cutting-edge techniques for smarter, reliable, responsible and environmentally sustainable artificial intelligence applications." And as the industry matures and machine learning (ML) models become cheaper, faster, and more accessible, every enterprise will be looking at how and where the technology may benefit their organization. Expectations are high, from driving productivity and efficiency gains to delivering new products and services. AI platforms are being enhanced by developments in related fields, including ML, computer vision, language, speech, recommendation engines, reinforcement learning, edge IT hardware, and robotics. However, with so much noise and hype around AI, it's tough for many businesses to figure out how to harness the technology effectively.

#ICRA2022, the great robotics scicommer – Day 1 video digest


The IEEE International Conference on Automation and Robotics, ICRA, is the itinerant flagship conference of the IEEE Robotics and Automation Society, RAS. In its 39th edition, ICRA is being held in the Pennsylvania Convention Center, in Philadelphia, PA, USA, between May 23 and 27, 2022. ICRA started just after the birth of the IEEE Robotics and Automation Society (formerly IEEE Robotics and Automation Council) in 1983. The first edition was held in Atlanta, GA, USA, in 1984. During its first years, the conference showed the growing interest of researchers and industry leaders in the emergent field of robotics.

3 Strategies To Redefine Your Executive Career Path With AI


Artificial Intelligence (AI) is disrupting businesses and job roles in every industry, causing concerns about long-term job security for low-skill manual jobs and management roles alike. To prepare for this AI-driven economy, many experienced managers and seasoned executives are turning to MOOCs (Massive Open Online Courses) to upskill in foundational data analytics and AI. This trend is unlikely to slow down anytime soon: The global MOOC market is expected to grow from $3.9 billion in 2018 to $20.8 billion by 2023, a CAGR of 40.1 percent. Business and technology-related courses make up 40 percent of these online courses. Many universities have also joined the drive to fill the AI leadership gap by offering high-touch executive education programs.

Machine Learning for Accounting with Python


This course, Machine Learning for Accounting with Python, introduces machine learning algorithms (models) and their applications in accounting problems. It covers classification, regression, clustering, text analysis, time series analysis. This course provides an entry point for students to be able to apply proper machine learning models on business related datasets with Python to solve various problems. Accounting Data Analytics with Python is a prerequisite for this course. This course is running on the same platform (Jupyter Notebook) as that of the prerequisite course.

Machine Learning and Reinforcement Learning in Finance


This course aims at providing an introductory and broad overview of the field of ML with the focus on applications on Finance. Supervised Machine Learning methods are used in the capstone project to predict bank closures. Simultaneously, while this course can be taken as a separate course, it serves as a preview of topics that are covered in more details in subsequent modules of the specialization Machine Learning and Reinforcement Learning in Finance. The goal of Guided Tour of Machine Learning in Finance is to get a sense of what Machine Learning is, what it is for and in how many different financial problems it can be applied to. The course is designed for three categories of students: Practitioners working at financial institutions such as banks, asset management firms or hedge funds Individuals interested in applications of ML for personal day trading Current full-time students pursuing a degree in Finance, Statistics, Computer Science, Mathematics, Physics, Engineering or other related disciplines who want to learn about practical applications of ML in Finance Experience with Python (including numpy, pandas, and IPython/Jupyter notebooks), linear algebra, basic probability theory and basic calculus is necessary to complete assignments in this course.

Developing AI Applications on Azure


This course introduces the concepts of Artificial Intelligence and Machine learning. We'll discuss machine learning types and tasks, and machine learning algorithms. You'll explore Python as a popular programming language for machine learning solutions, including using some scientific ecosystem packages which will help you implement machine learning. Next, this course introduces the machine learning tools available in Microsoft Azure. We'll review standardized approaches to data analytics and you'll receive specific guidance on Microsoft's Team Data Science Approach.

The Beginner's Guide to Artificial Intelligence in Unity 2022 - Couponos


The course begins with a detailed examination of vector mathematics that sits at the very heart of programming the movement of NPCs. Following this, systems of waypoints will be used to move characters around in an environment before examining the Unity waypoint system for car racing with AI controlled cars. This leads into an investigation of graph theory and the A* algorithm before we apply these principles to developing navmeshes and developing NPCs who can find their way around a game environment. Before an aquarium is programmed complete with autonomous schooling fish, crowds of people will be examined from the recreation of sidewalk traffic, to groups of people fleeing from danger. Having examined the differing ways to move NPCs around in a game environment, their thinking abilities will be discussed with full explanations and more hands-on workshops using finite state machines and behaviour trees.

25 Best Pluralsight Courses Online [Bestseller Courses 2022]


In this course, you will how to leverage Azure's Machine Learning capabilities to greatly increase the chance of success for your data science project. First, you will engage in team workflow and how Microsoft's Team Data Science Process (TDSP) enables best practices across disciplines. Then, you will discover the workflow of the Azure Machine Learning Service and how it can be leveraged on your project. You will also review how to create a pipeline for your data preparation, model training, and model registration. At the end of this course, you will explore the infrastructure approaches that can be leveraged for machine learning and how those approaches are supported on Azure.



In today's technologically driven world, data is the most valuable resource. Data is vital to any company's success because it allows for better and faster decision-making. Data science combines different algorithms, tools, and machine learning principles. This is where hidden patterns are found in raw data. As the data generated and analyzed continues to increase at an exponential rate, data analytics will be in high demand. Data science careers are promising.