Abbeel, Pieter



On a Connection between Importance Sampling and the Likelihood Ratio Policy Gradient

Neural Information Processing Systems

Likelihood ratio policy gradient methods have been some of the most successful reinforcement learning algorithms, especially for learning on physical systems. We describe how the likelihood ratio policy gradient can be derived from an importance sampling perspective. This derivation highlights how likelihood ratio methods under-use past experience by (a) using the past experience to estimate {\em only} the gradient of the expected return $U(\theta)$ at the current policy parameterization $\theta$, rather than to obtain a more complete estimate of $U(\theta)$, and (b) using past experience under the current policy {\em only} rather than using all past experience to improve the estimates. We present a new policy search method, which leverages both of these observations as well as generalized baselines---a new technique which generalizes commonly used baseline techniques for policy gradient methods. Our algorithm outperforms standard likelihood ratio policy gradient algorithms on several testbeds.


Goal-conditioned Imitation Learning

Neural Information Processing Systems

Designing rewards for Reinforcement Learning (RL) is challenging because it needs to convey the desired task, be efficient to optimize, and be easy to compute. The latter is particularly problematic when applying RL to robotics, where detecting whether the desired configuration is reached might require considerable supervision and instrumentation. Furthermore, we are often interested in being able to reach a wide range of configurations, hence setting up a different reward every time might be unpractical. Methods like Hindsight Experience Replay (HER) have recently shown promise to learn policies able to reach many goals, without the need of a reward. Unfortunately, without tricks like resetting to points along the trajectory, HER might require many samples to discover how to reach certain areas of the state-space.


Compositional Plan Vectors

Neural Information Processing Systems

Autonomous agents situated in real-world environments must be able to master large repertoires of skills. While a single short skill can be learned quickly, it would be impractical to learn every task independently. Instead, the agent should share knowledge across behaviors such that each task can be learned efficiently, and such that the resulting model can generalize to new tasks, especially ones that are compositions or subsets of tasks seen previously. A policy conditioned on a goal or demonstration has the potential to share knowledge between tasks if it sees enough diversity of inputs. However, these methods may not generalize to a more complex task at test time.


Geometry-Aware Neural Rendering

Neural Information Processing Systems

Understanding the 3-dimensional structure of the world is a core challenge in computer vision and robotics. Neural rendering approaches learn an implicit 3D model by predicting what a camera would see from an arbitrary viewpoint. We extend existing neural rendering to more complex, higher dimensional scenes than previously possible. We propose Epipolar Cross Attention (ECA), an attention mechanism that leverages the geometry of the scene to perform efficient non-local operations, requiring only $O(n)$ comparisons per spatial dimension instead of $O(n 2)$. We introduce three new simulated datasets inspired by real-world robotics and demonstrate that ECA significantly improves the quantitative and qualitative performance of Generative Query Networks (GQN).


Evaluating Protein Transfer Learning with TAPE

Neural Information Processing Systems

Protein modeling is an increasingly popular area of machine learning research. Semi-supervised learning has emerged as an important paradigm in protein modeling due to the high cost of acquiring supervised protein labels, but the current literature is fragmented when it comes to datasets and standardized evaluation techniques. To facilitate progress in this field, we introduce the Tasks Assessing Protein Embeddings (TAPE), a set of five biologically relevant semi-supervised learning tasks spread across different domains of protein biology. We curate tasks into specific training, validation, and test splits to ensure that each task tests biologically relevant generalization that transfers to real-life scenarios. We benchmark a range of approaches to semi-supervised protein representation learning, which span recent work as well as canonical sequence learning techniques.


Guided Meta-Policy Search

Neural Information Processing Systems

Reinforcement learning (RL) algorithms have demonstrated promising results on complex tasks, yet often require impractical numbers of samples because they learn from scratch. Meta-RL aims to address this challenge by leveraging experience from previous tasks so as to more quickly solve new tasks. However, in practice, these algorithms generally also require large amounts of on-policy experience during the \emph{meta-training} process, making them impractical for use in many problems. To this end, we propose to learn a reinforcement learning procedure in a federated way, where individual off-policy learners can solve the individual meta-training tasks, and then consolidate these solutions into a single meta-learner. Since the central meta-learner learns by imitating the solutions to the individual tasks, it can accommodate either the standard meta-RL problem setting, or a hybrid setting where some or all tasks are provided with example demonstrations.


The Importance of Sampling inMeta-Reinforcement Learning

Neural Information Processing Systems

We interpret meta-reinforcement learning as the problem of learning how to quickly find a good sampling distribution in a new environment. This interpretation leads to the development of two new meta-reinforcement learning algorithms: E-MAML and E-$\text{RL} 2$. Results are presented on a new environment we call Krazy World': a difficult high-dimensional gridworld which is designed to highlight the importance of correctly differentiating through sampling distributions in meta-reinforcement learning. Further results are presented on a set of maze environments. We show E-MAML and E-$\text{RL} 2$ deliver better performance than baseline algorithms on both tasks.


Learning Plannable Representations with Causal InfoGAN

Neural Information Processing Systems

In recent years, deep generative models have been shown to'imagine' convincing high-dimensional observations such as images, audio, and even video, learning directly from raw data. In this work, we ask how to imagine goal-directed visual plans -- a plausible sequence of observations that transition a dynamical system from its current configuration to a desired goal state, which can later be used as a reference trajectory for control. We focus on systems with high-dimensional observations, such as images, and propose an approach that naturally combines representation learning and planning. Our framework learns a generative model of sequential observations, where the generative process is induced by a transition in a low-dimensional planning model, and an additional noise. By maximizing the mutual information between the generated observations and the transition in the planning model, we obtain a low-dimensional representation that best explains the causal nature of the data.


Inverse Reward Design

Neural Information Processing Systems

Autonomous agents optimize the reward function we give them. What they don't know is how hard it is for us to design a reward function that actually captures what we want. When designing the reward, we might think of some specific training scenarios, and make sure that the reward will lead to the right behavior in those scenarios. Inevitably, agents encounter new scenarios (e.g., new types of terrain) where optimizing that same reward may lead to undesired behavior. Our insight is that reward functions are merely observations about what the designer actually wants, and that they should be interpreted in the context in which they were designed.