Personal Assistant Systems


Automatic Feature Induction for Stagewise Collaborative Filtering

Neural Information Processing Systems

Recent approaches to collaborative filtering have concentrated on estimating an algebraic or statistical model, and using the model for predicting missing ratings. In this paper we observe that different models have relative advantages in different regions of the input space. This motivates our approach of using stagewise linear combinations of collaborative filtering algorithms, with non-constant combination coefficients based on kernel smoothing. The resulting stagewise model is computationally scalable and outperforms a wide selection of state-of-the-art collaborative filtering algorithms. Papers published at the Neural Information Processing Systems Conference.


Text-Based Interactive Recommendation via Constraint-Augmented Reinforcement Learning

Neural Information Processing Systems

Text-based interactive recommendation provides richer user preferences and has demonstrated advantages over traditional interactive recommender systems. However, recommendations can easily violate preferences of users from their past natural-language feedback, since the recommender needs to explore new items for further improvement. To alleviate this issue, we propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time. Specifically, we leverage a discriminator to detect recommendations violating user historical preference, which is incorporated into the standard RL objective of maximizing expected cumulative future rewards. Our proposed framework is general and is further extended to the task of constrained text generation.


Deep content-based music recommendation

Neural Information Processing Systems

Automatic music recommendation has become an increasingly relevant problem in recent years, since a lot of music is now sold and consumed digitally. Most recommender systems rely on collaborative filtering. However, this approach suffers from the cold start problem: it fails when no usage data is available, so it is not effective for recommending new and unpopular songs. In this paper, we propose to use a latent factor model for recommendation, and predict the latent factors from music audio when they cannot be obtained from usage data. We compare a traditional approach using a bag-of-words representation of the audio signals with deep convolutional neural networks, and evaluate the predictions quantitatively and qualitatively on the Million Song Dataset.


A Latent Source Model for Online Collaborative Filtering

Neural Information Processing Systems

Despite the prevalence of collaborative filtering in recommendation systems, there has been little theoretical development on why and how well it works, especially in the online'' setting, where items are recommended to users over time. We address this theoretical gap by introducing a model for online recommendation systems, cast item recommendation under the model as a learning problem, and analyze the performance of a cosine-similarity collaborative filtering method. In our model, each of $n$ users either likes or dislikes each of $m$ items. We assume there to be $k$ types of users, and all the users of a given type share a common string of probabilities determining the chance of liking each item. At each time step, we recommend an item to each user, where a key distinction from related bandit literature is that once a user consumes an item (e.g., watches a movie), then that item cannot be recommended to the same user again.


Online Reciprocal Recommendation with Theoretical Performance Guarantees

Neural Information Processing Systems

A reciprocal recommendation problem is one where the goal of learning is not just to predict a user's preference towards a passive item (e.g., a book), but to recommend the targeted user on one side another user from the other side such that a mutual interest between the two exists. The problem thus is sharply different from the more traditional items-to-users recommendation, since a good match requires meeting the preferences of both users. We initiate a rigorous theoretical investigation of the reciprocal recommendation task in a specific framework of sequential learning. We point out general limitations, formulate reasonable assumptions enabling effective learning and, under these assumptions, we design and analyze a computationally efficient algorithm that uncovers mutual likes at a pace comparable to those achieved by a clairvoyant algorithm knowing all user preferences in advance. Finally, we validate our algorithm against synthetic and real-world datasets, showing improved empirical performance over simple baselines.


Blog: Contrasting Chatbots and Intelligent Virtual Assistants Intelligent Virtual Assistants for Customer Engagement Sales AI Assistants Conversica

#artificialintelligence

When attending trade shows and conferences supporting Conversica, a question I am frequently asked is whether Conversica's Intelligent Virtual Assistant for customer engagement is "a chatbot." And while I can understand the source of the question, I emphatically stress that Conversica is not a chatbot. A more cynical reader might assume that this differentiation is little more than branding. But I can assure you there are very real differences between what the Conversica Sales AI Assistant offers and what chatbot providers deliver. Each technology has its place and purpose, but neither is synonymous with the other.


Controlling privacy in recommender systems

Neural Information Processing Systems

Recommender systems involve an inherent trade-off between accuracy of recommendations and the extent to which users are willing to release information about their preferences. In this paper, we explore a two-tiered notion of privacy where there is a small set of public'' users who are willing to share their preferences openly, and a large set of private'' users who require privacy guarantees. We show theoretically and demonstrate empirically that a moderate number of public users with no access to private user information already suffices for reasonable accuracy. Moreover, we introduce a new privacy concept for gleaning relational information from private users while maintaining a first order deniability. We demonstrate gains from controlled access to private user preferences.


Probabilistic low-rank matrix completion on finite alphabets

Neural Information Processing Systems

The task of reconstructing a matrix given a sample of observed entries is known as the \emph{matrix completion problem}. Such a consideration arises in a wide variety of problems, including recommender systems, collaborative filtering, dimensionality reduction, image processing, quantum physics or multi-class classification to name a few. Most works have focused on recovering an unknown real-valued low-rank matrix from randomly sub-sampling its entries. Here, we investigate the case where the observations take a finite numbers of values, corresponding for examples to ratings in recommender systems or labels in multi-class classification. We also consider a general sampling scheme (non-necessarily uniform) over the matrix entries.


Data Science is the Backbone of IT Industry? Futre of Data Science ?

#artificialintelligence

With the shift from analog to digital, the flow of data has increased exponentially. Data is collected from a myriad of sources like web logs, mobile devices, sensors, instruments, and transactions. At the same time, new technologies are emerging to organize and make use of this avalanche of data. But the challenge lies in how to extract value from data. This is where Data Science comes in.


Markov Random Fields for Collaborative Filtering

Neural Information Processing Systems

In this paper, we model the dependencies among the items that are recommended to a user in a collaborative-filtering problem via a Gaussian Markov Random Field (MRF). We build upon Besag's auto-normal parameterization and pseudo-likelihood, which not only enables computationally efficient learning, but also connects the areas of MRFs and sparse inverse covariance estimation with autoencoders and neighborhood models, two successful approaches in collaborative filtering. We propose a novel approximation for learning sparse MRFs, where the trade-off between recommendation-accuracy and training-time can be controlled. At only a small fraction of the training-time compared to various baselines, including deep nonlinear models, the proposed approach achieved competitive ranking-accuracy on all three well-known data-sets used in our experiments, and notably a 20% gain in accuracy on the data-set with the largest number of items. Papers published at the Neural Information Processing Systems Conference.