Goto

Collaborating Authors

Kicking neural network design automation into high gear

#artificialintelligence

A new area in artificial intelligence involves using algorithms to automatically design machine-learning systems known as neural networks, which are more accurate and efficient than those developed by human engineers. But this so-called neural architecture search (NAS) technique is computationally expensive. A state-of-the-art NAS algorithm recently developed by Google to run on a squad of graphical processing units (GPUs) took 48,000 GPU hours to produce a single convolutional neural network, which is used for image classification and detection tasks. Google has the wherewithal to run hundreds of GPUs and other specialized hardware in parallel, but that's out of reach for many others. In a paper being presented at the International Conference on Learning Representations in May, MIT researchers describe an NAS algorithm that can directly learn specialized convolutional neural networks (CNNs) for target hardware platforms -- when run on a massive image dataset -- in only 200 GPU hours, which could enable far broader use of these types of algorithms.


Design Automation for Efficient Deep Learning Computing

arXiv.org Machine Learning

Efficient deep learning computing requires algorithm and hardware co-design to enable specialization: we usually need to change the algorithm to reduce memory footprint and improve energy efficiency. However, the extra degree of freedom from the algorithm makes the design space much larger: it's not only about designing the hardware but also about how to tweak the algorithm to best fit the hardware. Human engineers can hardly exhaust the design space by heuristics. It's labor consuming and sub-optimal. We propose design automation techniques for efficient neural networks. We investigate automatically designing specialized fast models, auto channel pruning, and auto mixed-precision quantization. We demonstrate such learning-based, automated design achieves superior performance and efficiency than rule-based human design. Moreover, we shorten the design cycle by 200x than previous work, so that we can afford to design specialized neural network models for different hardware platforms.


Auto Deep Compression by Reinforcement Learning Based Actor-Critic Structure

arXiv.org Machine Learning

Model-based compression is an effective, facilitating, and expanded model of neural network models with limited computing and low power. However, conventional models of compression techniques utilize crafted features [2,3,12] and explore specialized areas for exploration and design of large spaces in terms of size, speed, and accuracy, which usually have returns Less and time is up. This paper will effectively analyze deep auto compression (ADC) and reinforcement learning strength in an effective sample and space design, and improve the compression quality of the model. The results of compression of the advanced model are obtained without any human effort and in a completely automated way. With a 4- fold reduction in FLOP, the accuracy of 2.8% is higher than the manual compression model for VGG-16 in ImageNet.


Superkernel Neural Architecture Search for Image Denoising

arXiv.org Machine Learning

Recent advancements in Neural Architecture Search(NAS) resulted in finding new state-of-the-art Artificial Neural Network (ANN) solutions for tasks like image classification, object detection, or semantic segmentation without substantial human supervision. In this paper, we focus on exploring NAS for a dense prediction task that is image denoising. Due to a costly training procedure, most NAS solutions for image enhancement rely on reinforcement learning or evolutionary algorithm exploration, which usually take weeks (or even months) to train. Therefore, we introduce a new efficient implementation of various superkernel techniques that enable fast (6-8 RTX2080 GPU hours) single-shot training of models for dense predictions. We demonstrate the effectiveness of our method on the SIDD+ benchmark for image denoising.


Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS

arXiv.org Machine Learning

In this paper, we compare the three most popular algorithms for hyperparameter optimization ( Grid Search, Random Search, and Genetic Algorithm) and attempt to use them for neural architecture search (NAS). We use these algorithms for building a convolutional neural network (search architecture). Experimental results on CIF AR-10 dataset further demonstrate the performance difference between compared algorithms. The comparison results are based on the execution time of the above algorithms and accuracy of the proposed models.