Noisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization

arXiv.org Machine Learning

We address the problem of maximizing an unknown submodular function that can only be accessed via noisy evaluations. Our work is motivated by the task of summarizing content, e.g., image collections, by leveraging users' feedback in form of clicks or ratings. For summarization tasks with the goal of maximizing coverage and diversity, submodular set functions are a natural choice. When the underlying submodular function is unknown, users' feedback can provide noisy evaluations of the function that we seek to maximize. We provide a generic algorithm -- \submM{} -- for maximizing an unknown submodular function under cardinality constraints. This algorithm makes use of a novel exploration module -- \blbox{} -- that proposes good elements based on adaptively sampling noisy function evaluations. \blbox{} is able to accommodate different kinds of observation models such as value queries and pairwise comparisons. We provide PAC-style guarantees on the quality and sampling cost of the solution obtained by \submM{}. We demonstrate the effectiveness of our approach in an interactive, crowdsourced image collection summarization application.


Data Summarization at Scale: A Two-Stage Submodular Approach

arXiv.org Machine Learning

The sheer scale of modern datasets has resulted in a dire need for summarization techniques that identify representative elements in a dataset. Fortunately, the vast majority of data summarization tasks satisfy an intuitive diminishing returns condition known as submodularity, which allows us to find nearly-optimal solutions in linear time. We focus on a two-stage submodular framework where the goal is to use some given training functions to reduce the ground set so that optimizing new functions (drawn from the same distribution) over the reduced set provides almost as much value as optimizing them over the entire ground set. In this paper, we develop the first streaming and distributed solutions to this problem. In addition to providing strong theoretical guarantees, we demonstrate both the utility and efficiency of our algorithms on real-world tasks including image summarization and ride-share optimization.


Noisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization

AAAI Conferences

We address the problem of maximizing an unknown submodular function that can only be accessed via noisy evaluations. Our work is motivated by the task of summarizing content, e.g., image collections, by leveraging users' feedback in form of clicks or ratings. For summarization tasks with the goal of maximizing coverage and diversity, submodular set functions are a natural choice. When the underlying submodular function is unknown, users' feedback can provide noisy evaluations of the function that we seek to maximize. We provide a generic algorithm — ExpGreedy — for maximizing an unknown submodular function under cardinality constraints. This algorithm makes use of a novel exploration module— TopX — that proposes good elements based on adaptively sampling noisy function evaluations. TopX is able to accommodate different kinds of observation models such as value queries and pairwise comparisons. We provide PAC-style guarantees on the quality and sampling cost of the solution obtained by ExpGreedy. We demonstrate the effectiveness of our approach in an interactive, crowdsourced image collection summarization application.


Streaming Non-Monotone Submodular Maximization: Personalized Video Summarization on the Fly

AAAI Conferences

The need for real time analysis of rapidly producing data streams (e.g., video and image streams) motivated the design of streaming algorithms that can efficiently extract and summarize useful information from massive data "on the fly." Such problems can often be reduced to maximizing a submodular set function subject to various constraints. While efficient streaming methods have been recently developed for monotone submodular maximization, in a wide range of applications, such as video summarization, the underlying utility function is non-monotone, and there are often various constraints imposed on the optimization problem to consider privacy or personalization. We develop the first efficient single pass streaming algorithm, Streaming Local Search, that for any streaming monotone submodular maximization algorithm with approximation guarantee α under a collection of independence systems I, provides a constant 1/(1+2/√α+1/α+2d(1+√α)) approximation guarantee for maximizing a non-monotone submodular function under the intersection of I and d knapsack constraints. Our experiments show that for video summarization, our method runs more than 1700 times faster than previous work, while maintaining practically the same performance.


Learning Mixtures of Submodular Shells with Application to Document Summarization

arXiv.org Machine Learning

We introduce a method to learn a mixture of submodular "shells" in a large-margin setting. A submodular shell is an abstract submodular function that can be instantiated with a ground set and a set of parameters to produce a submodular function. A mixture of such shells can then also be so instantiated to produce a more complex submodular function. What our algorithm learns are the mixture weights over such shells. We provide a risk bound guarantee when learning in a large-margin structured-prediction setting using a projected subgradient method when only approximate submodular optimization is possible (such as with submodular function maximization). We apply this method to the problem of multi-document summarization and produce the best results reported so far on the widely used NIST DUC-05 through DUC-07 document summarization corpora.