A Deep Choice Model

AAAI Conferences

Human choice is complex in two ways. First, human choice often shows complex dependency on available alternatives. Second, human choice is often made after examining complex items such as images. The recently proposed choice model based on the restricted Boltzmann machine (RBM choice model) has been proved to represent three typical phenomena of human choice, which addresses the first complexity. We extend the RBM choice model to a deep choice model (DCM) to deal with the features of items, which are ignored in the RBM choice model. We then use deep learning to extract latent features from images and plug those latent features as input to the DCM. Our experiments show that the DCM adequately learns the choice that involves both of the two complexities in human choice.


Otsuka

AAAI Conferences

Human choice is complex in two ways. First, human choice often shows complex dependency on available alternatives. Second, human choice is often made after examining complex items such as images. The recently proposed choice model based on the restricted Boltzmann machine (RBM choice model) has been proved to represent three typical phenomena of human choice, which addresses the first complexity. We extend the RBM choice model to a deep choice model (DCM) to deal with the features of items, which are ignored in the RBM choice model. We then use deep learning to extract latent features from images and plug those latent features as input to the DCM. Our experiments show that the DCM adequately learns the choice that involves both of the two complexities in human choice.


Restricted Boltzmann machines modeling human choice

Neural Information Processing Systems

We extend the multinomial logit model to represent some of the empirical phenomena that are frequently observed in the choices made by humans. These phenomena include the similarity effect, the attraction effect, and the compromise effect. We formally quantify the strength of these phenomena that can be represented by our choice model, which illuminates the flexibility of our choice model. We then show that our choice model can be represented as a restricted Boltzmann machine and that its parameters can be learned effectively from data. Our numerical experiments with real data of human choices suggest that we can train our choice model in such a way that it represents the typical phenomena of choice.


Modeling Stated Preference for Mobility-on-Demand Transit: A Comparison of Machine Learning and Logit Models

arXiv.org Artificial Intelligence

Logit models are usually applied when studying individual travel behavior, i.e., to predict travel mode choice and to gain behavioral insights on traveler preferences. Recently, some studies have applied machine learning to model travel mode choice and reported higher out-of-sample prediction accuracy than conventional logit models (e.g., multinomial logit). However, there has not been a comprehensive comparison between logit models and machine learning that covers both prediction and behavioral analysis. This paper aims at addressing this gap by examining the key differences in model development, evaluation, and behavioral interpretation between logit and machine-learning models for travel-mode choice modeling. To complement the theoretical discussions, we also empirically evaluated the two approaches on stated-preference survey data for a new type of transit system integrating high-frequency fixed routes and micro-transit. The results show that machine learning can produce significantly higher predictive accuracy than logit models and are better at capturing the nonlinear relationships between trip attributes and mode-choice outcomes. On the other hand, compared to the multinomial logit model, the best-performing machine-learning model, the random forest model, produces less reasonable behavioral outputs (i.e. marginal effects and elasticities) when they were computed from a standard approach. By introducing some behavioral constraints into the computation of behavioral outputs from a random forest model, however, we obtained better results that are somewhat comparable with the multinomial logit model. We believe that there is great potential in merging ideas from machine learning and conventional statistical methods to develop refined models for travel-behavior research and suggest some possible research directions.


The Use of Binary Choice Forests to Model and Estimate Discrete Choice Models

arXiv.org Machine Learning

We show the equivalence of discrete choice models and the class of binary choice forests, which are random forest based on binary choice trees. This suggests that standard machine learning techniques based on random forest can serve to estimate discrete choice model with an interpretable output. This is confirmed by our data driven result that states that random forest can accurately predict the choice probability of any discrete choice model. Our framework has unique advantages: it can capture behavioral patterns such as irrationality or sequential searches; it handles nonstandard formats of training data that result from aggregation; it can measure product importance based on how frequently a random customer would make decisions depending on the presence of the product; it can also incorporate price information. Our numerical results show that binary choice forest can outperform the best parametric models with much better computational times.