Goto

Collaborating Authors

Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis

Neural Information Processing Systems

We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of many different speakers, including those unseen during training. Our system consists of three independently trained components: (1) a speaker encoder network, trained on a speaker verification task using an independent dataset of noisy speech from thousands of speakers without transcripts, to generate a fixed-dimensional embedding vector from seconds of reference speech from a target speaker; (2) a sequence-to-sequence synthesis network based on Tacotron 2, which generates a mel spectrogram from text, conditioned on the speaker embedding; (3) an auto-regressive WaveNet-based vocoder that converts the mel spectrogram into a sequence of time domain waveform samples. We demonstrate that the proposed model is able to transfer the knowledge of speaker variability learned by the discriminatively-trained speaker encoder to the new task, and is able to synthesize natural speech from speakers that were not seen during training. We quantify the importance of training the speaker encoder on a large and diverse speaker set in order to obtain the best generalization performance. Finally, we show that randomly sampled speaker embeddings can be used to synthesize speech in the voice of novel speakers dissimilar from those used in training, indicating that the model has learned a high quality speaker representation.



Scaling and bias codes for modeling speaker-adaptive DNN-based speech synthesis systems

arXiv.org Machine Learning

Most neural-network based speaker-adaptive acoustic models for speech synthesis can be categorized into either layer-based or input-code approaches. Although both approaches have their own pros and cons, most existing works on speaker adaptation focus on improving one or the other. In this paper, after we first systematically overview the common principles of neural-network based speaker-adaptive models, we show that these approaches can be represented in a unified framework and can be generalized further. More specifically, we introduce the use of scaling and bias codes as generalized means for speaker-adaptive transformation. By utilizing these codes, we can create a more efficient factorized speaker-adaptive model and capture advantages of both approaches while reducing their disadvantages. The experiments show that the proposed method can improve the performance of speaker adaptation compared with speaker adaptation based on the conventional input code.


DNN-based Speaker Embedding Using Subjective Inter-speaker Similarity for Multi-speaker Modeling in Speech Synthesis

arXiv.org Machine Learning

This paper proposes novel algorithms for speaker embedding using subjective inter-speaker similarity based on deep neural networks (DNNs). Although conventional DNN-based speaker embedding such as a $d$-vector can be applied to multi-speaker modeling in speech synthesis, it does not correlate with the subjective inter-speaker similarity and is not necessarily appropriate speaker representation for open speakers whose speech utterances are not included in the training data. We propose two training algorithms for DNN-based speaker embedding model using an inter-speaker similarity matrix obtained by large-scale subjective scoring. One is based on similarity vector embedding and trains the model to predict a vector of the similarity matrix as speaker representation. The other is based on similarity matrix embedding and trains the model to minimize the squared Frobenius norm between the similarity matrix and the Gram matrix of $d$-vectors, i.e., the inter-speaker similarity derived from the $d$-vectors. We crowdsourced the inter-speaker similarity scores of 153 Japanese female speakers, and the experimental results demonstrate that our algorithms learn speaker embedding that is highly correlated with the subjective similarity. We also apply the proposed speaker embedding to multi-speaker modeling in DNN-based speech synthesis and reveal that the proposed similarity vector embedding improves synthetic speech quality for open speakers whose speech utterances are unseen during the training.


Wasserstein GAN and Waveform Loss-based Acoustic Model Training for Multi-speaker Text-to-Speech Synthesis Systems Using a WaveNet Vocoder

arXiv.org Machine Learning

Recent neural networks such as WaveNet and sampleRNN that learn directly from speech waveform samples have achieved very high-quality synthetic speech in terms of both naturalness and speaker similarity even in multi-speaker text-to-speech synthesis systems. Such neural networks are being used as an alternative to vocoders and hence they are often called neural vocoders. The neural vocoder uses acoustic features as local condition parameters, and these parameters need to be accurately predicted by another acoustic model. However, it is not yet clear how to train this acoustic model, which is problematic because the final quality of synthetic speech is significantly affected by the performance of the acoustic model. Significant degradation happens, especially when predicted acoustic features have mismatched characteristics compared to natural ones. In order to reduce the mismatched characteristics between natural and generated acoustic features, we propose frameworks that incorporate either a conditional generative adversarial network (GAN) or its variant, Wasserstein GAN with gradient penalty (WGAN-GP), into multi-speaker speech synthesis that uses the WaveNet vocoder. We also extend the GAN frameworks and use the discretized mixture logistic loss of a well-trained WaveNet in addition to mean squared error and adversarial losses as parts of objective functions. Experimental results show that acoustic models trained using the WGAN-GP framework using back-propagated discretized-mixture-of-logistics (DML) loss achieves the highest subjective evaluation scores in terms of both quality and speaker similarity.