Goto

Collaborating Authors

A review of machine learning applications in wildfire science and management

arXiv.org Machine Learning

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.



Thirty Years of Machine Learning:The Road to Pareto-Optimal Next-Generation Wireless Networks

arXiv.org Machine Learning

Next-generation wireless networks (NGWN) have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of machine learning by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning, respectively. Furthermore, we investigate their employment in the compelling applications of NGWNs, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various machine learning algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.


Survey on Models and Techniques for Root-Cause Analysis

arXiv.org Artificial Intelligence

Automation and computer intelligence to support complex human decisions becomes essential to manage large and distributed systems in the Cloud and IoT era. Understanding the root cause of an observed symptom in a complex system has been a major problem for decades. As industry dives into the IoT world and the amount of data generated per year grows at an amazing speed, an important question is how to find appropriate mechanisms to determine root causes that can handle huge amounts of data or may provide valuable feedback in real-time. While many survey papers aim at summarizing the landscape of techniques for modelling system behavior and infering the root cause of a problem based in the resulting models, none of those focuses on analyzing how the different techniques in the literature fit growing requirements in terms of performance and scalability. In this survey, we provide a review of root-cause analysis, focusing on these particular aspects. We also provide guidance to choose the best root-cause analysis strategy depending on the requirements of a particular system and application.


New Polynomial Classes for Logic-Based Abduction

AAAI Conferences

We address the problem of propositional logic-based abduction, i.e., the problem of searching for a best explanation for a given propositional observation according to a given propositional knowledge base. We give a general algorithm, based on the notion of projection; then we study restrictions over the representations of the knowledge base and of the query, and find new polynomial classes of abduction problems.