Liu, Miao (Duke University) | Liao, Xuejun (Duke University) | Carin, Lawrence (Duke University)

We present online nested expectation maximization for model-free reinforcement learning in a POMDP. The algorithm evaluates the policy only in the current learning episode, discarding the episode after the evaluation and memorizing the sufficient statistic, from which the policy is computed in closed-form. As a result, the online algorithm has a time complexity O ( n ) and a memory complexity O (1), compared to O ( n 2 ) and O ( n ) for the corresponding batch-mode algorithm, where $n$ is the number of learning episodes. The online algorithm, which has a provable convergence, is demonstrated on five benchmark POMDP problems.

Wang, Yi, Won, Kok Sung, Hsu, David, Lee, Wee Sun

Bayesian reinforcement learning (BRL) encodes prior knowledge of the world in a model and represents uncertainty in model parameters by maintaining a probability distribution over them. This paper presents Monte Carlo BRL (MC-BRL), a simple and general approach to BRL. MC-BRL samples a priori a finite set of hypotheses for the model parameter values and forms a discrete partially observable Markov decision process (POMDP) whose state space is a cross product of the state space for the reinforcement learning task and the sampled model parameter space. The POMDP does not require conjugate distributions for belief representation, as earlier works do, and can be solved relatively easily with point-based approximation algorithms. MC-BRL naturally handles both fully and partially observable worlds. Theoretical and experimental results show that the discrete POMDP approximates the underlying BRL task well with guaranteed performance.

Liu, Miao (Massachusetts Institute of Technology) | Amato, Christopher (University of New Hampshire) | Liao, Xuejun (Duke University) | Carin, Lawrence (Duke University) | How, Jonathan P. (Massachusetts Institute of Technology)

Expectation maximization (EM) has recently been shown to be an efficient algorithm for learning finite-state controllers (FSCs) in large decentralized POMDPs (Dec-POMDPs). However, current methods use fixed-size FSCs and often converge to maxima that are far from the optimal value. This paper considers a variable-size FSC to represent the local policy of each agent. These variable-size FSCs are constructed using a stick-breaking prior, leading to a new framework called decentralized stick-breaking policy representation (Dec-SBPR). This approach learns the controller parameters with a variational Bayesian algorithm without having to assume that the Dec-POMDP model is available. The performance of Dec-SBPR is demonstrated on several benchmark problems, showing that the algorithm scales to large problems while outperforming other state-of-the-art methods.

Asmuth, John, Littman, Michael L.

Bayes-optimal behavior, while well-defined, is often difficult to achieve. Recent advances in the use of Monte-Carlo tree search (MCTS) have shown that it is possible to act near-optimally in Markov Decision Processes (MDPs) with very large or infinite state spaces. Bayes-optimal behavior in an unknown MDP is equivalent to optimal behavior in the known belief-space MDP, although the size of this belief-space MDP grows exponentially with the amount of history retained, and is potentially infinite. We show how an agent can use one particular MCTS algorithm, Forward Search Sparse Sampling (FSSS), in an efficient way to act nearly Bayes-optimally for all but a polynomial number of steps, assuming that FSSS can be used to act efficiently in any possible underlying MDP.

Garcia, Francisco M., Thomas, Philip S.

In this paper we consider the problem of how a reinforcement learning agent that is tasked with solving a sequence of reinforcement learning problems (a sequence of Markov decision processes) can use knowledge acquired early in its lifetime to improve its ability to solve new problems. We argue that previous experience with similar problems can provide an agent with information about how it should explore when facing a new but related problem. We show that the search for an optimal exploration strategy can be formulated as a reinforcement learning problem itself and demonstrate that such strategy can leverage patterns found in the structure of related problems. We conclude with experiments that show the benefits of optimizing an exploration strategy using our proposed approach.