Identification and Off-Policy Learning of Multiple Objectives Using Adaptive Clustering

arXiv.org Artificial Intelligence

In this work, we present a methodology that enables an agent to make efficient use of its exploratory actions by autonomously identifying possible objectives in its environment and learning them in parallel. The identification of objectives is achieved using an online and unsupervised adaptive clustering algorithm. The identified objectives are learned (at least partially) in parallel using Q-learning. Using a simulated agent and environment, it is shown that the converged or partially converged value function weights resulting from off-policy learning can be used to accumulate knowledge about multiple objectives without any additional exploration. We claim that the proposed approach could be useful in scenarios where the objectives are initially unknown or in real world scenarios where exploration is typically a time and energy intensive process. The implications and possible extensions of this work are also briefly discussed.


Learning Efficient and Effective Exploration Policies with Counterfactual Meta Policy

arXiv.org Machine Learning

A fundamental issue in reinforcement learning algorithms is the balance between exploration of the environment and exploitation of information already obtained by the agent. Especially, exploration has played a critical role for both efficiency and efficacy of the learning process. However, Existing works for exploration involve task-agnostic design, that is performing well in one environment, but be ill-suited to another. To the purpose of learning an effective and efficient exploration policy in an automated manner. We formalized a feasible metric for measuring the utility of exploration based on counterfactual ideology. Based on that, We proposed an end-to-end algorithm to learn exploration policy by meta-learning. We demonstrate that our method achieves good results compared to previous works in the high-dimensional control tasks in MuJoCo simulator.


An Actor/Critic Algorithm that is Equivalent to Q-Learning

Neural Information Processing Systems

We prove the convergence of an actor/critic algorithm that is equivalent toQ-Iearning by construction. Its equivalence is achieved by encoding Q-values within the policy and value function of the actor andcritic. The resultant actor/critic algorithm is novel in two ways: it updates the critic only when the most probable action is executed from any given state, and it rewards the actor using criteria thatdepend on the relative probability of the action that was executed.


Policy Optimization with Model-based Explorations

arXiv.org Machine Learning

Model-free reinforcement learning methods such as the Proximal Policy Optimization algorithm (PPO) have successfully applied in complex decision-making problems such as Atari games. However, these methods suffer from high variances and high sample complexity. On the other hand, model-based reinforcement learning methods that learn the transition dynamics are more sample efficient, but they often suffer from the bias of the transition estimation. How to make use of both model-based and model-free learning is a central problem in reinforcement learning. In this paper, we present a new technique to address the trade-off between exploration and exploitation, which regards the difference between model-free and model-based estimations as a measure of exploration value. We apply this new technique to the PPO algorithm and arrive at a new policy optimization method, named Policy Optimization with Model-based Explorations (POME). POME uses two components to predict the actions' target values: a model-free one estimated by Monte-Carlo sampling and a model-based one which learns a transition model and predicts the value of the next state. POME adds the error of these two target estimations as the additional exploration value for each state-action pair, i.e, encourages the algorithm to explore the states with larger target errors which are hard to estimate. We compare POME with PPO on Atari 2600 games, and it shows that POME outperforms PPO on 33 games out of 49 games.


Deeper & Sparser Exploration

arXiv.org Machine Learning

We address the problem of efficient exploration by proposing a new meta algorithm in the context of model-based online planning for Bayesian Reinforcement Learning (BRL). We beat the state-of-the-art, while staying computationally faster, in some cases by two orders of magnitude. This is the first Optimism free BRL algorithm to beat all previous state-of-the-art in tabular RL. The main novelty is the use of a candidate policy generator, to generate long-term options in the belief tree, which allows us to create much sparser and deeper trees. We present results on many standard environments and empirically prove its performance.