Goto

Collaborating Authors

A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks

Neural Information Processing Systems

Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially is a fundamental requirement for deploying a good classifier in many real-world machine learning applications. However, deep neural networks with the softmax classifier are known to produce highly overconfident posterior distributions even for such abnormal samples. In this paper, we propose a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier. We obtain the class conditional Gaussian distributions with respect to (low- and upper-level) features of the deep models under Gaussian discriminant analysis, which result in a confidence score based on the Mahalanobis distance. While most prior methods have been evaluated for detecting either out-of-distribution or adversarial samples, but not both, the proposed method achieves the state-of-the-art performances for both cases in our experiments. Moreover, we found that our proposed method is more robust in harsh cases, e.g., when the training dataset has noisy labels or small number of samples. Finally, we show that the proposed method enjoys broader usage by applying it to class-incremental learning: whenever out-of-distribution samples are detected, our classification rule can incorporate new classes well without further training deep models.


Questions about machine learning • /r/MachineLearning

#artificialintelligence

Why do we need layer the last layer #nodes #classes? What is the difference between multiclass and one vs all? How to define dense neurons before the softmax classifier? On what depends how many dense networks do we need before the softmax layer in a Convolutional Neural Network? Are loss and accuracy complementary to each other?


DropMax: Adaptive Variational Softmax

Neural Information Processing Systems

We propose DropMax, a stochastic version of softmax classifier which at each iteration drops non-target classes according to dropout probabilities adaptively decided for each instance. Specifically, we overlay binary masking variables over class output probabilities, which are input-adaptively learned via variational inference. This stochastic regularization has an effect of building an ensemble classifier out of exponentially many classifiers with different decision boundaries. Moreover, the learning of dropout rates for non-target classes on each instance allows the classifier to focus more on classification against the most confusing classes. We validate our model on multiple public datasets for classification, on which it obtains significantly improved accuracy over the regular softmax classifier and other baselines.


Money on the Table: Statistical information ignored by Softmax can improve classifier accuracy

arXiv.org Machine Learning

Softmax is a standard final layer used in Neural Nets (NNs) to summarize information encoded in the trained NN and return a prediction. However, Softmax leverages only a subset of the class-specific structure encoded in the trained model and ignores potentially valuable information: During training, models encode an array $D$ of class response distributions, where $D_{ij}$ is the distribution of the $j^{th}$ pre-Softmax readout neuron's responses to the $i^{th}$ class. Given a test sample, Softmax implicitly uses only the row of this array $D$ that corresponds to the readout neurons' responses to the sample's true class. Leveraging more of this array $D$ can improve classifier accuracy, because the likelihoods of two competing classes can be encoded in other rows of $D$. To explore this potential resource, we develop a hybrid classifier (Softmax-Pooling Hybrid, $SPH$) that uses Softmax on high-scoring samples, but on low-scoring samples uses a log-likelihood method that pools the information from the full array $D$. We apply $SPH$ to models trained on a vectorized MNIST dataset to varying levels of accuracy. $SPH$ replaces only the final Softmax layer in the trained NN, at test time only. All training is the same as for Softmax. Because the pooling classifier performs better than Softmax on low-scoring samples, $SPH$ reduces test set error by 6% to 23%, using the exact same trained model, whatever the baseline Softmax accuracy. This reduction in error reflects hidden capacity of the trained NN that is left unused by Softmax.


A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks

arXiv.org Machine Learning

Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially is a fundamental requirement to deploying a good classifier in many real-world machine learning applications. However, deep neural networks with the softmax classifier are known to produce highly overconfident posterior distributions even for such abnormal samples. In this paper, we propose a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier. We obtain the class conditionalGaussian distributions with respect to (low- and upper-level) features of the deep models under Gaussian discriminant analysis, which result in a confidence score based on the Mahalanobis distance. While most prior methods have been evaluated for detecting either out-of-distribution or adversarial samples, but not both, the proposed method achieves the state-of-art performances for both cases in our experiments. Moreover, we found that our proposed method is more robust in extreme cases, e.g., when the training dataset has noisy labels or small number of samples. Finally, we show that the proposed method enjoys broader usage by applying it to class incremental learning: whenever out-of-distribution samples are detected, our classification rule can incorporate new classes well without further training deep models.