Goto

Collaborating Authors

Bayesian time series classification

Neural Information Processing Systems

This paper proposes an approach to classification of adjacent segments of a time series as being either of classes. We use a hierarchical model that consists of a feature extraction stage and a generative classifier which is built on top of these features. Such two stage approaches are often used in signal and image processing. The novel part of our work is that we link these stages probabilistically by using a latent feature space. To use one joint model is a Bayesian requirement, which has the advantage to fuse information according to its certainty.


Bayesian time series classification

Neural Information Processing Systems

This paper proposes an approach to classification of adjacent segments of a time series as being either of classes. We use a hierarchical model that consists of a feature extraction stage and a generative classifier which is built on top of these features. Such two stage approaches are often used in signal and image processing. The novel part of our work is that we link these stages probabilistically by using a latent feature space. To use one joint model is a Bayesian requirement, which has the advantage to fuse information according to its certainty.


On Input Selection with Reversible Jump Markov Chain Monte Carlo Sampling

Neural Information Processing Systems

In this paper we will treat input selection for a radial basis function (RBF) like classifier within a Bayesian framework. We approximate the a-posteriori distribution over both model coefficients and input subsets by samples drawn with Gibbs updates and reversible jump moves. Using some public datasets, we compare the classification accuracy of the method with a conventional ARD scheme. These datasets are also used to infer the a-posteriori probabilities of different input subsets. 1 Introduction Methods that aim to determine relevance of inputs have always interested researchers in various communities. Classical feature subset selection techniques, as reviewed in [1], use search algorithms and evaluation criteria to determine one optimal subset.


On Input Selection with Reversible Jump Markov Chain Monte Carlo Sampling

Neural Information Processing Systems

In this paper we will treat input selection for a radial basis function (RBF) like classifier within a Bayesian framework. We approximate the a-posteriori distribution over both model coefficients and input subsets by samples drawn with Gibbs updates and reversible jump moves. Using some public datasets, we compare the classification accuracy of the method with a conventional ARD scheme. These datasets are also used to infer the a-posteriori probabilities of different input subsets. 1 Introduction Methods that aim to determine relevance of inputs have always interested researchers in various communities. Classical feature subset selection techniques, as reviewed in [1], use search algorithms and evaluation criteria to determine one optimal subset.


On Input Selection with Reversible Jump Markov Chain Monte Carlo Sampling

Neural Information Processing Systems

In this paper we will treat input selection for a radial basis function (RBF) like classifier within a Bayesian framework. We approximate the a-posteriori distribution over both model coefficients and input subsets by samples drawn with Gibbs updates and reversible jump moves. Using some public datasets, we compare the classification accuracy of the method with a conventional ARD scheme. These datasets are also used to infer the a-posteriori probabilities of different inputsubsets.